
COMUNE DI REGGELLO

PROVINCIA DI FIRENZE

Aggiornamento quadro conoscitivo del Piano Strutturale

RELAZIONE IDROLOGICA E IDRAULICA

Relazione R.IDR.01

Professionista incaricato: Dott. Ing. David Settesoldi

Emesso:	Revisionato:	Adottato:	Approvato:
Settembre 2016	Gennaio 2017		

PROVINCIA DI FIRENZE

Comune di Reggello

STUDIO IDROLOGICO E IDRAULICO NEL COMUNE DI REGGELLO A SUPPORTO DELL'ATTIVITÀ DI REVISIONE DEL PIANO STRUTTURALE

RELAZIONE IDROLOGICA E IDRAULICA

Physis – Ingegneria per l'Ambiente divisione di West Systems s.r.l.

Ing. David Settesoldi

Firenze

Gennaio 2017

INDICE

1	PRE	MESSA	8
2	IL C	UADRO CONOSCITIVO	. 11
	2.1	Dati territoriali	. 11
	2.2	MODELLO DIGITALE DEL TERRENO	. 11
	2.3	LE SEZIONI FLUVIALI	. 11
	2.4	GLI STUDI ESISTENTI	. 13
3	L'Aî	NALISI IDROLOGICA	. 17
	3.1	MODELLO IDROLOGICO	. 17
	3.2	CONFRONTO CON IL MODELLO ALTO	. 38
4	ANA	ALISI IDRAULICA	. 44
	4.1	IL MODELLO IDRAULICO UNIDIMENSIONALE	. 44
	4.2	IL MODELLO DI INONDAZIONE QUASI - BIDIMENSIONALE	. 47
	4.3	IL MODELLO DI INONDAZIONE BIDIMENSIONALE	. 49
	4.4	LA MODELLAZIONE IDRAULICA DELLE CONNESSIONI IDRAULICHE	. 54
	4.5	IL MODELLO DIGITALE DELLE AREE INONDABILI	. 56
	4.5.1	Il modello digitale delle aree inondabili nell'area di Leccio	58
	4.6	DEFINIZIONE DEI CORSI D'ACQUA OGGETTO DI STUDIO	. 60
	4.7	SCHEMATIZZAZIONE DELL'AREA DI STUDIO	. 60
	4.8	PARAMETRI DEL MODELLO IDRAULICO	. 61
	4.9	LE CONDIZIONI AL CONTORNO FIUME ARNO - AFFLUENTI	. 64
5	VEF	RIFICA DELLO STATO ATTUALE	. 72
	5.1	INDIVIDUAZIONE DELLE AREE INONDABILI NELLO STATO ATTUALE	. 72
	5.2	AGGIORNAMENTO DELLA PERICOLOSITÀ IDRAULICA NELLO STATO ATTUALE	. 73
	5.3	PERICOLOSITÀ MORFOLOGICA E STORICO INVENTARIALE	. 74

Studio idraulico e idraulico nel Comune di Reggello a supporto dell'attività di revisione del Piano Strutturale	

ELENCO FIGURE

ura 1-1 – Aree di studio Comune di Reggello10
ura 2-1 – Sezioni fluviali area Reggello NW12
ura 2-2 – Sezioni fluviali area Reggello SW13
ura 2-3 – Pericolosità idraulica del PGRA14
ura 2-4 –Legenda pericolosità idraulica del PGRA14
ura 2-5 -Interventi del Piano Stralcio Rischio Idraulico
ura 2-6 – Legenda interventi del Piano Stralcio Rischio Idraulico
ura 3-1 – Sezioni di interesse
ura 3-2 – Bacini idrografici affluenti18
ura 3-3 – Mappa tempi di trasferimento19
ura 3-4 – Confronto TI Modello - TI Alto
ura 3-5 – Uso del suolo21
ura 3-6 – Geolitologia23
ura 3-7 – Parametro a delle curve di possibilità pluviometrica 201224
ura 3-8 – Parametro n delle curve di possibilità pluviometrica 201225
ura 3-9 – Parametro m delle curve di possibilità pluviometrica 2012
ura 3-10 – Topoieti27
ura 3-11 – Confronto tra il modello Alto e il presente modello per il tempo di ritorno di 30 anni 42
ura 3-12 – Confronto tra il modello Alto e il presente modello per il tempo di ritorno di 200 anni 43
ura 3-13 – Confronto tra il modello Alto e il presente modello per il tempo di ritorno di 500 anni 43
ura 4-1 – Griglia di calcolo equazione di continuità50
ura 4-2 – Griglia di calcolo equazione di moto lungo X
ura 4-3 – Griglia di calcolo equazione di moto lungo Y53
ura 4-4 – Schema del sistema oggetto di studio
ura 4-5 – Ricostruzione modello digitale area Leccio

Figura 4-6 – Profilo torrente Vicano di Sant'Ellero con rigurgito Arno	66
Figura 4-7 – Profilo torrente Borro di Ciliana con rigurgito Arno.	66
Figura 4-8 – Profilo torrente torrente Marnia con rigurgito Arno	67
Figura 4-9 – Profilo torrente fosso San Carlino con rigurgito Arno.	67
Figura 4-10 – Profilo fosso di Leccio con rigurgito Arno.	68
Figura 4-11 – Profilo fosso di Tornia con rigurgito Arno	68
Figura 4-12 – Profilo fosso di Cetina con rigurgito Arno	69
Figura 4-13 – Profilo borro di Ricavo con rigurgito Arno.	69
Figura 4-14 – Profilo torrente Chiesimone con rigurgito Arno	70
Figura 4-15 – Profilo diversivo fosso Colmate con rigurgito Arno	70
Figura 4-16 – Profilo fosso Colmate con rigurgito Arno.	71
Figura 4-17 – Profilo torrente Resco con rigurgito Arno	71

ELENCO TABELLE

Tabella 3-1 – Valori di la per i diversi usi del suolo	. 20
Tabella 3-2 – Valori del Ks per le diverse formazioni	. 22
Tabella 3-3 – Parametri delle curve di possibilità pluviometrica al 2002	. 26
Tabella 3-4 – Parametri del modello ALTO per i bacini	. 29
Tabella 3-5 – Parametri del modello ALTO per i sottobacini	. 31
Tabella 3-6 – Risultati del modello ALTO per i bacini	. 37
Tabella 3-7 – Aree e durate per il calcolo dei vari scenari	. 38
Tabella 3-8 – parametri del modello Alto	. 40
Tabella 3-9 – parametri del presente modello	. 42
Tabella 4-1 – Elenco corsi d'acqua	. 60
Tabella 4-2 – Livelli massimi in Arno per i vari tempi di ritorno	. 65
Tabella 5-1 – Superficie inondata nel comune di Reggello	. 73
Tabella 5-2 – Superficie a diversa pericolosità nel comune di Reggello ai sensi del D.P.G.R. 53/R	. 73
Tabella 5-3 – Superficie a diversa pericolosità nel comune di Reggello ai sensi del PGRA	. 74
Tabella 5-4 – Corsi d'acqua oggetto di analisi morfologica e storico inventariale	. 74
Tabella 5-5 – Criteri di assegnazione della pericolosità geomorfologica	. 74

ELENCO ELABORATI:

R01 – Relazione idrologica e idraulica

A01 – Tabulati verifiche idrauliche

A02 – Sezioni fluviali e livelli idrometrici

T01 – Carta del contesto idraulico

T02_NW - Planimetria caratteristiche modello idraulico
 T02 SW - Planimetria caratteristiche modello idraulico

T03.1 - Profili longitudinali per i tempi di ritorno di 30, 200 e 500 anni, per borro Sant'Ellero,

torrente Vicano, Marnia, borro Trana, di Capannone, fosso San Carlino, di Tornia, di

Leccio e di Cetina

T03.2 - Profili longitudinali per i tempi di ritorno di 30, 200 e 500 anni per torrente

Chiesimone, borro di Ricavo, di Castelnuovo e Orecchie

T03.3 - Profili longitudinali per i tempi di ritorno di 30, 200 e 500 anni per torrente Resco

Cascese, torrente Resco Simontano, borro Pilano, borro di Colmate

T04.1 NW – Battenti di esondazione e velocità di propagazione per i tempi di ritorno di 30 anni

T04.1 SW – Battenti di esondazione e velocità di propagazione per i tempi di ritorno di 30 anni

T04.2 NW – Battenti di esondazione e velocità di propagazione per i tempi di ritorno di 200 anni

T04.2 SW – Battenti di esondazione e velocità di propagazione per i tempi di ritorno di 200 anni

T04.3 NW – Battenti di esondazione e velocità di propagazione per i tempi di ritorno di 500 anni

T04.3 SW – Battenti di esondazione e velocità di propagazione per i tempi di ritorno di 500 anni

T05 NW - Planimetria delle aree inondabili

T05 SW – Planimetria delle aree inondabili

T06 NW – Planimetria della pericolosità idraulica ai sensi del regolamento 53/R

T06 SW – Planimetria della pericolosità idraulica ai sensi del regolamento 53/R

T07 NW – Planimetria della pericolosità idraulica ai sensi del PGRA

T07 SW – Planimetria della pericolosità idraulica ai sensi del PGRA

1 PREMESSA

Nel presente aggiornamento "Gennaio 2017", degli elaborati costituenti il presente supporto, si è provveduto ad indicare in "rosso" tutte le modifiche e/o variazioni rispetto al materiale allestito nel Settembre 2016 apportate in corso di istruttoria da parte della Regione Toscana – Direzione Difesa del Suolo e Protezione Civile – Settore Genio Civile Valdarno Superiore – Sede di Firenze di cui al parere con richiesta di integrazioni prot. n. AOOGRT/17392/N060060 del 13.016.2017 relativamente alla pratica relativa al deposito n. 3315 del 11.10.2016.

Le integrazioni di carattere idraulico richieste sono le seguenti:

- 1. Nella documentazione idraulica non sono esplicitate le condizioni al contorno Fiume Arno / affluenti. Ai fini dell'applicazione della DCI 235/2016 -Disciplina di Piano del nuovo PGRA del Bacino del Fiume Arno art. 14, punto 6, si richiedono chiarimenti in merito. Infatti l'esplicitazione di tali condizioni risulta necessaria a quest'Ufficio per il controllo e la validazione degli studi sugli affluenti e dei relativi calcoli idraulici in merito alla confluenza fra gli affluenti stessi (nella fattispecie di competenza del Comune e sottoposti al controllo di quest'Ufficio) e il Fiume Arno, (di competenza dell'Autorità di Bacino, che ci legge per conoscenza).
- 2. Si rileva inoltre come non siano state perimetrate le aree a diversa pericolosità in aggiunta a quelle soggette a modellazione idraulica. Così come previsto dal punto C.2 dell'Allegato A del DPGR 53/R/11, si richiede di estendere tale perimetrazione su base morfologica e storico inventariale anche agli altri tratti dei corsi d'acqua non modellati, con particolare riferimento ai corsi d'acqua elencati nel PIT.
- 3. Nel corso dei sopralluoghi effettuati, in destra idrografica del Torrente Leccio, sono emerse discrepanze morfologiche fra quanto modellato attraverso la tecnologia LIDAR e l'attuale topografia, presumibilmente a causa dell'intensa urbanizzazione avvenuta successivamente al rilievo LIDAR. Poiché tale discrepanza potrebbe comportare anche un'errata attribuzione di pericolosità idraulica per quelle zone, si prescrive di rivedere la carta dei battenti e la relativa carta di pericolosità attraverso l'aggiornamento anche speditivo della topografia delle zone comprese fra la sponda destra del Torrente Leccio e il bacino del Fosso S. Carlino, fino al confine nord dell'attuale zona recentemente urbanizzata.

West Systems s.r.l. è stata incaricata dal Comune di Reggello di redigere il presente studio finalizzato all'attività di revisione della pericolosità idraulica a supporto del Piano Strutturale ai sensi delle Norme di Attuazione del Piano di Assetto Idrogeologico del fiume Arno e ai sensi del D.P.G.R. 53/R del 25 ottobre 2011.

I rilievi del terreno eseguiti con la tecnica del *laser scanning* (Lidar) forniscono una conoscenza delle variazioni altimetriche del terreno con una risoluzione spaziale ed una precisione notevolmente maggiore rispetto a quella derivabile dalla C.T.R. 1:2.000.

Questo grado di dettaglio delle informazioni ha permesso di implementare una modellazione bidimensionale delle aree inondabili.

Gli obiettivi del presente studio sono:

- perimetrazione della pericolosità idraulica ai sensi del D.P.G.R. 53/R del 25 ottobre 2011
- perimetrazione della pericolosità idraulica ai sensi del Piano di Gestione del Rischio Alluvioni (di seguito indicato PGRA);

Il presente studio risulta articolato nelle seguenti fasi fondamentali:

FASE 1 – definizione del quadro conoscitivo: in tale fase sano stati acquisiti ed esaminati gli studi, la documentazione e i dati disponibili riguardanti il reticolo idrografico considerato. In particolare sono state acquisite le sezioni fluviali più recenti, i progetti forniti dal Comune di Reggello e i rilievi Lidar forniti dalla Regione Toscana;

FASE 2 – analisi idrologica: per il bacino idrografico considerato sono state valutate le portate al colmo e gli idrogrammi di piena per i tempi di ritorno di 30, 200, e 500 anni e per le durate critiche di ciascun corso d'acqua;

FASE 3 – analisi idraulica: la modellazione degli eventi di piena è stata eseguita attraverso un modello unidimensionale di moto vario, che ha permesso di individuare i livelli idrici nelle sezioni fluviali considerate nonché le eventuali insufficienze idrauliche, accoppiato ad un modello bidimensionale per la stima dei battenti di esondazione. Le verifiche idrauliche sono state condotte per i tempi di ritorno di 30, 200 e 500 anni e per le durate critiche di ciascun corso d'acqua;

FASE 4 – valutazione della pericolosità idraulica e della compatibilità idraulica degli interventi previsti: sulla base dei battenti idrici ottenuti dal modello bidimensionale per lo stato attuale, sono state elaborate le nuove perimetrazioni delle aree inondabili. Sulla base di tali perimetrazioni sono state perimetrate la pericolosità idraulica ai sensi del D.P.G.R. 53/R del 25 ottobre 2011 e la pericolosità idraulica ai sensi del PGRA.

L'area oggetto di studio è riportata in Figura 1-1:

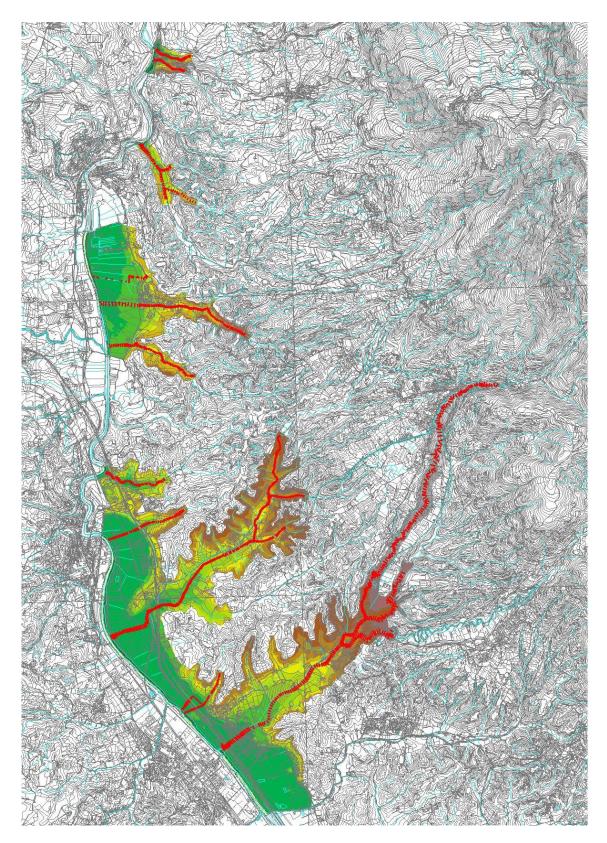


Figura 1-1 – Aree di studio Comune di Reggello

2 IL QUADRO CONOSCITIVO

2.1 Dati territoriali

Le basi cartografiche utilizzate sono costituite dalla Cartografia Tecnica Regionale in scala 1:10000 e 1:2.000 in formato vettoriale.

La cartografia 1:10.000 è stata utilizzata per l'inquadramento a livello di bacino, mentre la cartografia CTR 1:2000 per l'inquadramento a livello locale.

2.2 Modello digitale del terreno

La modellazione idraulica bidimensionale è stata condotta sul modello digitale del Terreno Lidar fornito dalla Regione Toscana. Il passo del modello digitale Lidar è 1 x 1 m.

Il modello digitale copre quasi completamente l'area di studio fatta eccezione per alcune parti marginali dove è stato costruito un modello digitale a partire dalla cartografia scala 1:2000.

2.3 Le sezioni fluviali

Le sezioni fluviali sono state ricavate dalle seguenti fonti:

- Rilievo condotto su incarico dell'Istituto De Angeli per il torrente Chiesimone Supporto alle osservazioni del Piano Gestione Rischio Alluvioni dell'Autorità di Bacino Fiume Arno, maggio 2015;
- Rilievo condotto dalla Provincia di Arezzo per il Torrente Leccio Progetto di riassetto idraulico del torrente Leccio per la riduzione del rischio idraulico nella frazione di Leccio in Comune di Reggello - IV stralcio, 2002.
- Rilievo condotto dalla Provincia di Arezzo per il Torrente Leccio Progetto di riassetto idraulico del torrente Leccio per la riduzione del rischio idraulico nella frazione di Leccio in Comune di Reggello - Il stralcio, 2002.
- Progetto realizzato da HydroGeo per il Torrente Leccio Indagini idrologiche idrauliche a supporto del piano di recupero edilizio per la riqualificazione ambientale del fabbricato denominato "le casacce", con messa in sicurezza della viabilità di accesso al borgo e la realizzazione di nuovo attraversamento carrabile sul fosso di Leccio nel Comune di Reggello, ottobre 2011
- Sezioni realizzate sul torrente Resco acquisite da West Systems Realizzazione del sistema di casse di laminazione finalizzate alla mitigazione del rischio idraulico nell'area del Valdarno Fiorentino - I stralcio / I Lotto: Cassa d'espansione Pizziconi e sistemazione del reticolo idraulico di pertinenza, settembre 2009.

Per i corsi d'acqua torrente Vicano, borro Sant'Ellero, torrente Marnia, borro Trana, borro di Capannone, fosso San Carlino, fosso di Tornia, fosso di Leccio, fosso di Cetina, torrente Chiesimone, borro di Ricavo, borro di Castelnuovo, borro Orecchie, torrente Resco Cascese, torrente Resco

Simontano, borro Pilano e borro di Colmate è stato condotto un rilievo topografico specifico per tutti gli attraversamenti presenti e manufatti in alveo..

Complessivamente sono state acquisite 699 sezioni, le quali sono state interpolate a circa 25 metri con sezioni ricavate dal modello digitale lidar per ottenerne in totale di 1627, come riportate nella Figura 2-1 e Figura 2-2.

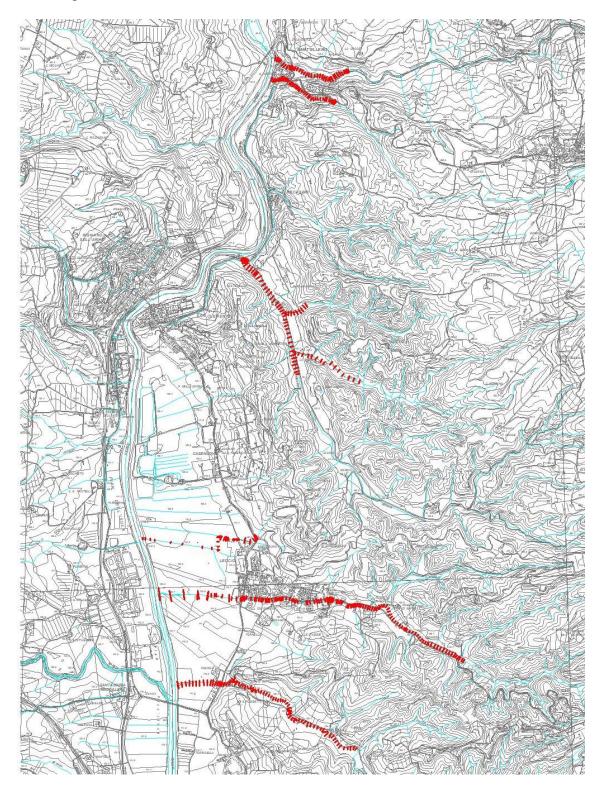


Figura 2-1 – Sezioni fluviali area Reggello NW

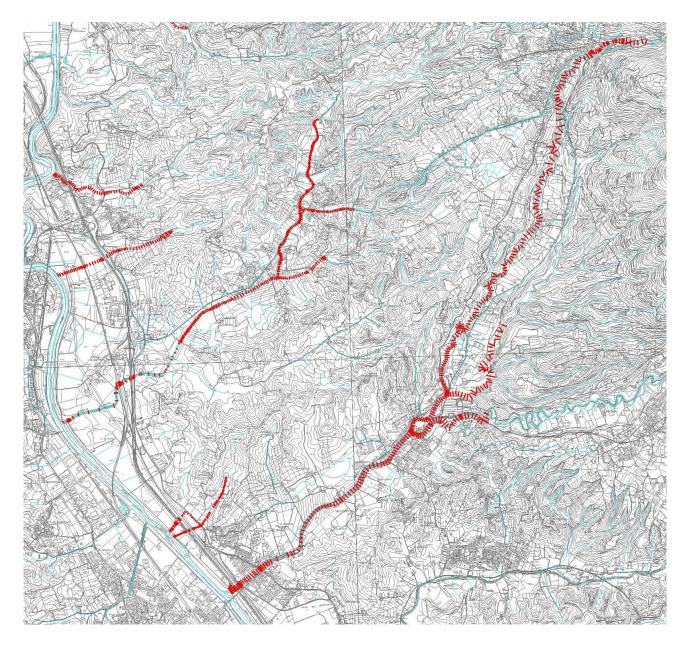


Figura 2-2 – Sezioni fluviali area Reggello SW

La localizzazione delle sezioni ed i profili longitudinali sono riportati rispettivamente nella Tavola T02_NW e T02_SW e nella Tavola T03.1, T03.2 e T03.3 mentre le sezioni fluviali trasversali sono nell'allegato A02.

2.4 Gli studi esistenti

Per la definizione del quadro conoscitivo sono stati raccolti i seguenti studi:

- 1. Piano di Gestione del Rischio Alluvioni dell' Autorità di Bacino del fiume Arno;
- 2. Piano Stralcio Rischio Idraulico dell'Autorità di Bacino del fiume Arno;

Si riporta di seguito la pericolosità idraulica del Piano di Gestione del Rischio Alluvioni nella Figura 2-3 e Figura 2-4.

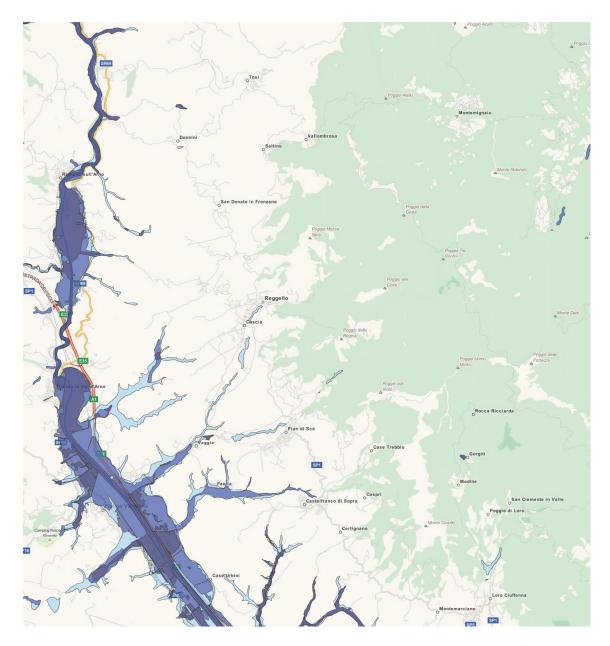


Figura 2-3 – Pericolosità idraulica del PGRA

pericolosita_alluvioni_fluviali

P1 - pericolosita bassa
P2 - pericolosita media
P3 - pericolosita elevata

Figura 2-4 –Legenda pericolosità idraulica del PGRA

Nella *Figura 2-5* e Figura 2-6, si riporta la carta degli interventi strutturali del Piano di Assetto Idrogeologico. Sull'asta principale del fiume Arno sono previsti interventi di tipo A mentre sul Chiesimone e sul Resco sono previsti interventi di tipo B.

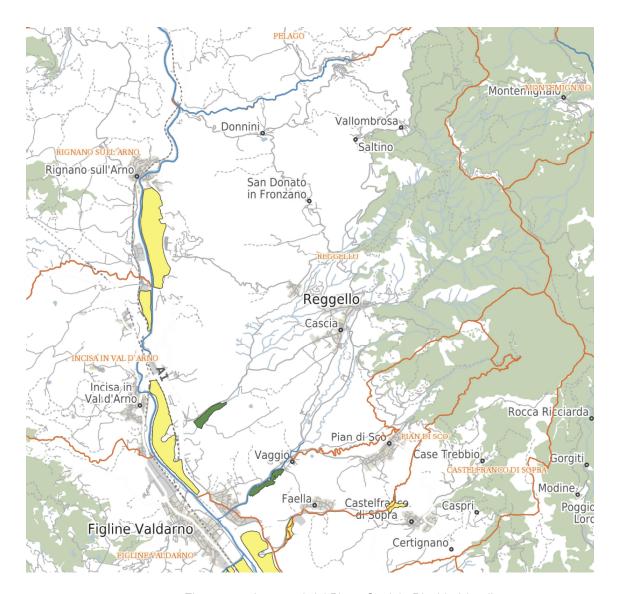


Figura 2-5 - Interventi del Piano Stralcio Rischio Idraulico

Interventi strutturali Rischio Idraulico
□Interventi di tipo "A"
□Interventi di tipo "B"

Figura 2-6 – Legenda interventi del Piano Stralcio Rischio Idraulico

Sono stati inoltre visionati i seguenti studi:

- Piano di recupero edilizio PDR-9 Le Ripe sul torrente Chiesimone;
- Nuovo Centro Pastorale della Parrocchia S. Maria Regina a Matassino sul torrente Resco;
- Piano di recupero di iniziativa privata in località Ponte all'Ulivo sul torrente Chiesimone.

Nella tavola T01 - Carta del contesto fluviale sono riportate:

• Contesto fluviale del PGRA (Art. 14 delle norme del PGRA);

- Aree allagate eventi eccezionali e ricorrenti e aree allagate 1991/92/93 (Norma 6 del Piano Stralcio Rischio Idraulico);
- Interventi strutturali tipo A e B (Art. 15 delle norme del PGRA);
- Reticolo idraulico significativo (approvato con la L.R. n. 79 del 27 dicembre 2012).

3 L'ANALISI IDROLOGICA

3.1 Modello idrologico

L'analisi idrologica è stata condotta sul torrente Vicano, borro Sant'Ellero, torrente Marnia, borro Trana, borro di Capannone, fosso San Carlino, fosso di Tornia, fosso di Leccio, fosso di Cetina, torrente Chiesimone, borro di Ricavo, borro di Castelnuovo, borro Orecchie, torrente Resco Cascese, torrente Resco Simontano, borro Pilano e borro di Colmate con il modello ALTO messo a punto dalla regione Toscana per la regionalizzazione delle portate di piena.

L'analisi idrologica è finalizzata alla determinazione degli idrogrammi di piena per i tempi di ritorno di 30, 200 e 500 anni.

In primo luogo sono state identificate le sezioni di interesse riportate nella Figura 3-1.

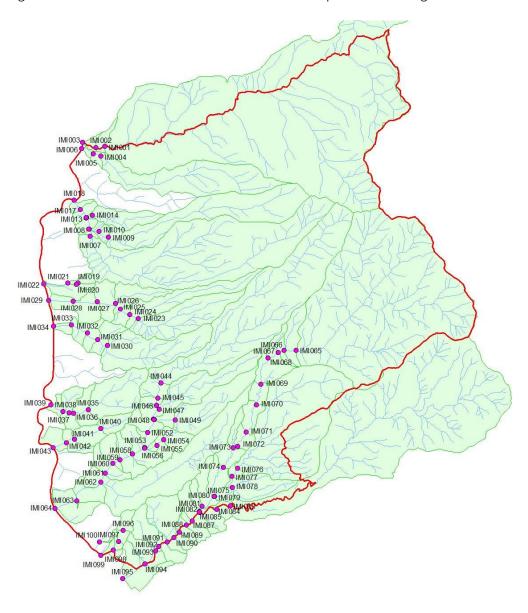


Figura 3-1 – Sezioni di interesse

I parametri del modello sono n e k di Nash la e Ks e curve di possibilità pluviometrica.

I bacini afferenti sono stati calcolati in automatico a partire dal modello digitale del terreno con passo 10mx10m della Regione Toscana e il reticolo idrografico approvato con la L.R. n. 79 del 27 dicembre 2012 attraverso il calcolo della mappa dei puntatori idrologici e degli ordini di calcolo (Figura 3-2).

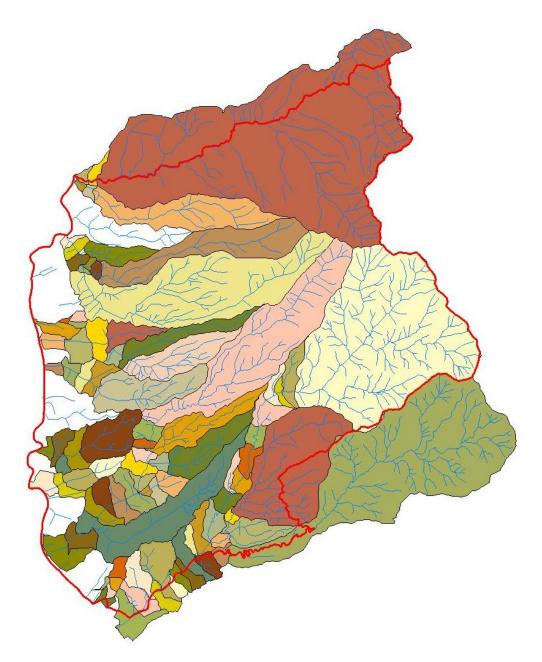


Figura 3-2 – Bacini idrografici affluenti

I parametri n e k sono stati calcolati a partire dal valore di TI=n*k assumendo una velocità di trasferimento costante nel bacino pari a 1.1m/s. Nella Figura 3-3 si riporta la mappa dei tempi di trasferimento alla sezione di chiusura.

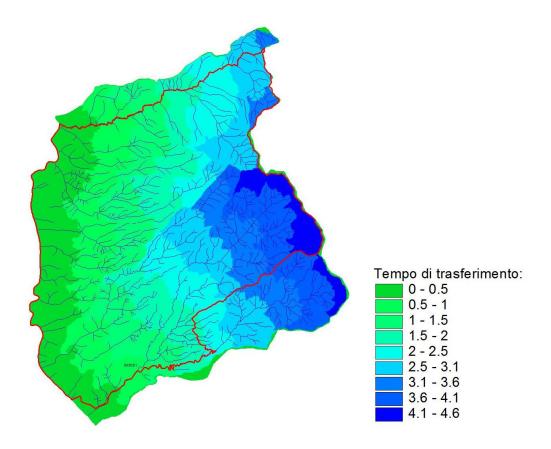


Figura 3-3 – Mappa tempi di trasferimento

Nella Figura 3-4 si riporta il confronto tra i tempi di trasferimento di ALTO e quelli calcolati con la suddetta procedura in una serie di sezioni di controllo.

Il valore di n è stato assunto il valore di 2.44 pari alla media dei valori calcolati con Alto per i bacini di interesse.

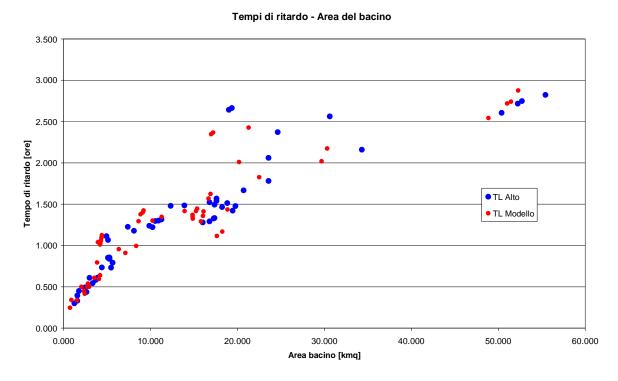
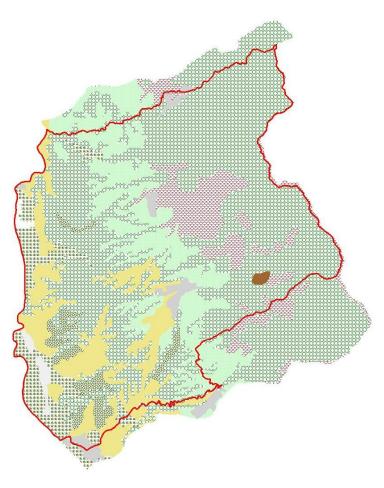


Figura 3-4 - Confronto TI Modello - TI Alto

Il parametro la e Ks è stato valutato secondo la metodologia proposta nel modello ALTO utilizzando la carta della geologia e dell'uso del suolo della Autorità di Bacino del Fiume Arno.


Il parametro la è stato calcolato in funzione della superficie boscata presente nel bacino secondo la relazione la = 3.3+22 Psb secondo la legenda riportata nella Tabella 3-1 relativa alla cartografia della Autorità di Bacino del fiume Arno.

Il parametro Ks è stato calcolato a partire dalla geolitologia del bacino secondo la legenda riportata nella Tabella 3-2 relativa alla cartografia della Autorità di Bacino del fiume Arno.

CODICE	DESCRIZIONE	IA
11	Zone urbanizzate	3.3
12	Zone industriali, commerciali e reti di comunicazione	3.3
13	Zone estrattive, discariche e cantieri	3.3
14	Zone verdi artificiali non agricole	3.3
21	Seminativi	3.3
22	Colture permanenti	3.3
23	Prati stabili	3.3
24	Zone agricole eterogenee	3.3
31	Zone boscate	25.3
32	Zone caratterizzate da vegetazione arbustiva e/o erbacea	3.3
33	Zone aperte con vegetazione rada o assente	3.3
51	Acque continentali	3.3

Tabella 3-1 – Valori di la per i diversi usi del suolo

L'uso del suolo dei bacini sono riportate nella Figura 3-5.

- Tessuto urbano continuo
 Zone industriali, commerciali e reti di comunicazione
 Zone verdi artificiali non agricole
 Seminativi
 Colture permanenti
 Prati stabili
 Zone agricole eterogenee
 Zone boscate
 Zone caratterizzate da vegetazione arbustiva e/o erbacea
 Zone aperte con vegetazione rada o assente
 - Acque continentali

Figura 3-5 – Uso del suolo

Per quanto riguarda la geolitologia:

CODICE	DESCRIZIONE	KS [mm/h]
	("arenarie di Monte Cervarola"); arenarie turbiditiche quarzoso-feldspatiche a grana	
aC	fine, in strati sottili; talora lenti di selci (sel) Aquitaniano-Langhiano superiore	1.550
	("alberese" e "formazione di Lanciaia") calcari a grana fine grigio chiari, calcari	
alb	marnosi scuri e arenarie calcaree gradate Paleocene-Eocene medio	0.000
all	alluvioni recenti e attuali Olocene	0.000
at	alluvioni terrazzate; ove distinte at1, at2, at3 Pleist. sup.	0.000

	arenarie e brecce sedimentarie ofiolitiche, brecce poligeniche a cemento argillitico	
b	con prevalenti elementi calcarei ed in subordine ofiolitici	0.775
	conglomerati e arenarie di materiale ofiolitico alla base di cb.Paleocene-Eocene	
bw	medio	0.775
	argille e marne con calcari, calcari marnosi, arenarie e calcareniti intercalate talora	
cb	brecce sedimentarie costituite da rocce verdi, diaspri e calcari litografici	0.000
cd	Conoidi Olocene	2.325
	bianchi o debolmente colorati a Calpionelle, con rare liste e noduli di selce Titon.	
сС	supValanginiano-Neocomiano	7.750
D	diabasi, diabasi brecciati e diabasi a pillow lavas	0.000
	("diaspri") radiolariti ed argilliti silicee, sottilmente stratificate, prevalentemente rosse	0.000
di	Malm p.p.	3.875
dt	detriti	2.325
f	frane	2.325
1	("argilliti di Fiumalbo - marne di Le Piastre") argilliti varicolori,siltiti e marne grigie	2.020
fP1	Oligocene superiore	0.000
	intervalli frequenti o potenti di marne siltose e siltiti in aC Aquitaniano-Langhiano	0.000
fPaC	superiore	0.000
11 40	(formazione di Villa a Radda) argilloscisti talora siltosi,prevalentemente rossi, con	0.000
	pochi strati calcari marnosi verdastri o arenarie calcarifere, intercalati nella parte alta	
fVR	di pf o al tetto di questa Cretaceo supEocene inf.	0.000
G	Gabbro giurassico	0.000
<u> </u>	("maiolica") calcari e calcari litografici selciferi bianco latte; nella parte alta calcari	0.000
mac	grigi talora selciferi e calcareniti Titonico supNeocomiano/Barremiano	4.650
mg	argille con lenti di gesso e di salgemma Messiniano sup.	0.000
9	("marne a Posidonomya") marne e argilliti marnose grigio giallastre, talora con strati	0.000
	di calcareniti gradate e con rari livelli di radiolariti; intercalazioni nella parte alta di	
mp	radiolariti Lias supDogger p.p	0.000
Nu	calcareniti e calciruditi grigie, gradate Eocene	4.650
	a luoghi intercalazioni di materiale ligure in aC (olistostromi) Aquitaniano-Langhiano	
ol	superiore	1.550
-	conglomerati e ghiaie prevalentemente argillose, con sabbie e sabbie argillose (al	
Pcg	tetto e laterale di Ps) Plioc. infmedio	0.775
9	("pietraforte") arenarie calcaree alternate ad argilliti subordinatamente livelli di marne	
pf	varieta' ofiolitifera Cretaceo superiore-Eocene inf.	1.550
S	serpentine Giurassico	0.000
sB	("sabbie di Bucine") sabbie argillose con lenti di sabbie ed argille Pleist. sup.	2.325
	("scaglia toscana") argilliti rosse e varicolori con intercalazioni di calcari silicei grigi,	
	marne rosse e calcareniti; al tetto marne siltose grigie, subordinatamente varicolori;	
SC	Cretaceo inf. p.pOligocene	0.000
-	("argille di Figline") argille stratificate con straterelli sabbiosi e lenti di ciottoli	
Vag	arenacei e rari straterelli lignitiferi Pleist. inf.	0.000
Vag	ciottoli prevalentemente calcarei, con alternanze sabbiose Pleist. inf.	0.775
Vs	("sabbie del Tasso") sabbie con lenti di ciottoli e sabbie argillose Pleist. inf.	0.000

Tabella 3-2 – Valori del Ks per le diverse formazioni

La geolitologia dei bacini sono riportate nella Figura 3-6 e nella Tavola T01.

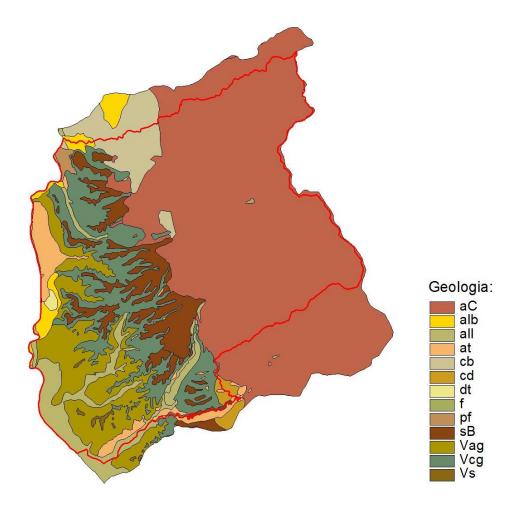


Figura 3-6 – Geolitologia

Le curve di possibilità pluviometrica sono state stimate a partire dalle curve di possibilità pluviometrica calcolate dalla Università di Firenze per conto della Regione utilizzando i dati pluviometrici al 2012.

Il suddetto studio fornisce le curve di possibilità pluviometrica nella forma generica:

 $h = a t^n$

dove:

- h altezza di pioggia in [mm/h];
- t durata evento [h];
- a coefficiente dipendente dal tempo di ritorno [mm/hⁿ];
- n esponente della curva di possibilità pluviometrica.

I valori di a e n su una maglia di 1kmx1km su tutto il territorio regionale sono disponibili per i tempi di ritorno di 2, 5, 10, 20, 30, 50, 100, 150, 200 e 500 anni.

Al fine di poter utilizzare le suddette curve nel modello ALTO la curva di crescita, che dipende dal modello probabilistico utilizzato, è stata approssimata per interpolazione con una curva di potenza. Tale interpolazione è stata condotta per i tempi di ritorno di 30, 100, 200 e 500 anni.

La curva si possibilità pluviometrica risulta pertanto espressa nella nota forma:

 $h = a^{\iota} t^n T^m$

dove:

- a' coefficiente [mm/hⁿy^m];
- T tempo di ritorno in anni [y].

Nella Figura 3-7, Figura 3-8 e Figura 3-9 si riportano le mappe dei valori dei parametri a, n e m delle curve di possibilità pluviometrica.

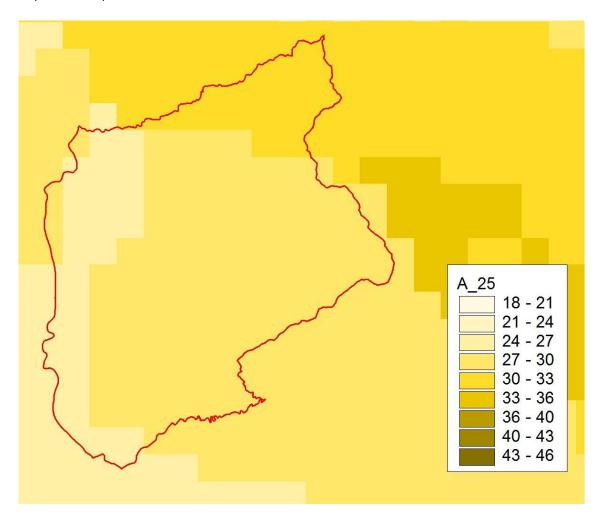


Figura 3-7 – Parametro a delle curve di possibilità pluviometrica 2012

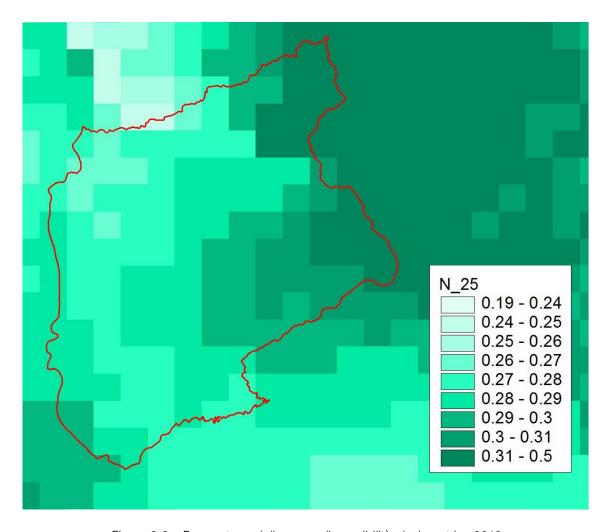


Figura 3-8 – Parametro n delle curve di possibilità pluviometrica 2012

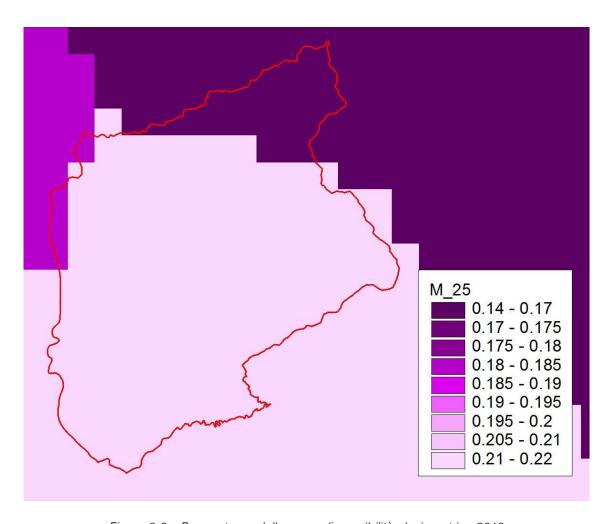


Figura 3-9 – Parametro m delle curve di possibilità pluviometrica 2012

Di norma la curva di possibilità pluviometrica presenta due andamenti distinti per le durata inferiori e superiori all'ora con differenti coefficienti. Gli studi condotti dalla Università di Firenze forniscono i dati solo per durate superiori all'ora.

Nell'ambito del presente studio vista la dimensione dei bacini analizzati il valore del parametro n al disotto della durata oraria è stato stimato in funzione del rapporto esistente nelle curve di possibilità pluviometrica del modello Alto aggiornate al 2002 tra n maggiore dell'ora e n minore dell'ora.

Le stazioni di riferimento sono riportate nella Tabella 3-3. con i valori dei parametri della curva di possibilità pluviometrica aggiornata al 2002 per le durate inferiori e superiori all'ora.

CODICE	stazione	Х	у	а	n	m	a'	n'	m'
870	RENACCI (FATTORIA)	703885	4829580	21.334	0.302	0.213	21.374	0.270	0.166
900	VALLOMBROSA	706000	4845450	26.699	0.338	0.209	28.073	0.425	0.165
1040	CONSUMA	708125	4851395	24.720	0.329	0.201	24.706	0.305	0.170
1050	NAVE DI ROSANO - PONTASSIEVE	694960	4849630	21.790	0.327	0.211	23.445	0.286	0.154

Tabella 3-3 – Parametri delle curve di possibilità pluviometrica al 2002

Pertanto per il parametro n inferiore all'ora è stato calcolato un valore corretto con la seguente espressione:

$$n_{lora}^{2012} \frac{n_{lora}^{2002}}$$

L'ietogramma è stato assunto di intensità costante. La variabilità spazio-temporale della precipitazione è messa in conto attraverso lo stesso coefficiente di riduzione Kr già adottato nella stima di tipo regionale, basato sulla formula dell'USWB:

$$Kr = 1 - \exp(-t) + \exp(-t - A)$$

Il valore di Kr dipende da tre fattori:

- l'estensione dell'area investita dalla precipitazione;
- la durata considerata;
- l'altezza di pioggia.

I parametri di default sono i seguenti:

- $-\alpha = 0.036$ a, dove a è il parametro della CPP;
- $\beta = 0.25;$
- $\gamma = 0.01.$

Nella Figura 3-10 si riportano i topoieti.

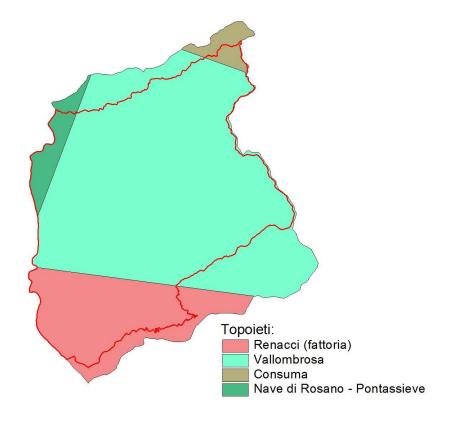


Figura 3-10 - Topoieti

Nella Tabella 3-4 si riportano i parametri del modello ALTO per ciascun bacino.

CODICE	NOME	AREA	IA	KS	N	K	A1	N1	M1	۸	N	М	QB	SEZIONE
			20.62							A 01.167				
001	IMI001 IMI002	29.33 29.55	20.62	1.216	2.437	0.757 0.783	31.167 31.134	0.348	0.156 0.157	31.167 31.134	0.299	0.156 0.157	0.1	IMI001 IMI002
002	IMI002	29.55	20.33	1.207	2.437	0.763	31.134	0.348	0.157	31.121	0.298	0.157	0.1	IMI002
003	IMI003	3.77	16.98	1.051	2.437	0.828	27.714	0.346	0.137	27.714	0.280	0.137	0.1	IMI003
005	IMI004	3.89	16.97	1.045	2.437	0.372	27.697	0.326	0.214	27.697	0.280	0.214	0.1	IMI004
006	IMI006	3.95	17.01	1.029	2.437	0.427	27.704	0.326	0.214	27.704	0.280	0.214	0.1	IMI006
007	IMI007	10.19	10.37	1.341	2.437	0.512	28.210	0.334	0.215	28.210	0.286	0.215	0.1	IMI007
008	IMI008	10.24	10.45	1.336	2.437	0.533	28.201	0.333	0.215	28.201	0.286	0.215	0.1	IMI008
009	IMI009	4.19	16.75	1.495	2.437	0.412	28.113	0.332	0.214	28.113	0.284	0.214	0.1	IMI009
010	IMI010	4.33	17.03	1.472	2.437	0.435	28.071	0.331	0.214	28.071	0.284	0.214	0.1	IMI010
011	IMI011	4.41	17.12	1.459	2.437	0.461	28.048	0.331	0.214	28.048	0.284	0.214	0.1	IMI011
012	IMI012	14.64	12.43	1.372	2.437	0.513	28.157	0.333	0.215	28.157	0.285	0.215	0.1	IMI012
013	IMI013	14.85	12.50	1.361	2.437	0.543	28.134	0.332	0.215	28.134	0.285	0.215	0.1	IMI013
014	IMI014	0.86	20.90	1.296	2.437	0.121	27.012	0.322	0.214	27.012	0.276	0.214	0.1	IMI014
015	IMI015	0.88	20.90	1.279	2.437	0.139	27.000	0.322	0.214	27.000	0.276	0.214	0.1	IMI015
016	IMI016	15.74	12.96	1.357	2.437	0.521	28.060	0.332	0.215	28.060	0.284	0.215	0.1	IMI016
017	IMI017	15.97	13.02	1.346	2.437	0.546	28.033	0.331	0.215	28.033	0.284	0.215	0.1	IMI017
018	IMI018	16.11	13.05	1.338	2.437	0.579	28.017	0.331	0.215	28.017	0.284	0.215	0.1	IMI018
019	IMI019	0.12	24.53	0.998	2.437	0.035	26.769	0.322	0.214	26.769	0.276	0.214	0.1	IMI019
020	IMI020	0.20	22.43	0.656	2.437	0.040	26.895	0.322	0.214	26.895	0.276	0.214	0.1	IMI020
021	IMI021	0.23	19.68	0.555	2.437	0.062	26.903	0.322	0.214	26.903	0.276	0.214	0.1	IMI021
022	IMI022	0.39	3.78	0.000	2.437	0.089	27.568	0.328	0.205	27.568	0.281	0.205	0.1	IMI022
023	IMI023	2.35	15.55	1.615	2.437	0.184	28.227	0.337	0.214	28.227	0.289	0.214	0.1	IMI023
024	IMI024	3.90	14.75	1.487	2.437	0.217	28.233	0.336	0.214	28.233	0.288	0.214	0.1	IMI024
025	IMI025	4.13	15.00	1.449	2.437	0.242	28.194	0.336	0.214	28.194	0.288	0.214	0.1	IMI025
026	IMI026	4.89	16.07	1.379	2.437	0.240	28.094	0.335	0.215	28.094	0.287	0.215	0.1	IMI026
027	IMI027	5.49	16.09	1.263	2.437	0.276	28.004	0.335	0.215	28.004	0.287	0.215	0.1	IMI027
028	IMI028	6.07	15.08	1.158	2.437	0.327	27.924	0.333	0.215	27.924	0.286	0.215	0.1	IMI028
029	IMI029 IMI030	6.35 2.69	14.56 19.75	1.107 1.280	2.437	0.392	27.921 27.947	0.333	0.214	27.921 27.947	0.286	0.214	0.1	IMI029 IMI030
030	IMI030	3.14	20.06	1.186	2.437	0.192	27.947	0.334	0.214	27.947	0.286	0.214	0.1	IMI030
031	IMI031	3.45	19.33	1.112	2.437	0.207	27.862	0.333	0.214	27.862	0.285	0.214	0.1	IMI031
033	IMI033	3.72	18.33	1.035	2.437	0.278	27.821	0.332	0.214	27.821	0.285	0.214	0.1	IMI033
034	IMI034	3.86	17.78	0.997	2.437	0.326	27.792	0.332	0.214	27.792	0.285	0.214	0.1	IMI034
035	IMI035	1.72	17.17	0.677	2.437	0.131	27.815	0.331	0.214	27.815	0.284	0.214	0.1	IMI035
036	IMI036	2.23	14.23	0.541	2.437	0.156	27.687	0.332	0.214	27.687	0.284	0.214	0.1	IMI036
037	IMI037	2.40	13.46	0.503	2.437	0.162	27.660	0.332	0.214	27.660	0.285	0.214	0.1	IMI037
038	IMI038	2.78	12.07	0.435	2.437	0.167	27.597	0.332	0.214	27.597	0.285	0.214	0.1	IMI038
039	IMI039	2.95	11.58	0.411	2.437	0.204	27.549	0.332	0.214	27.549	0.285	0.214	0.1	IMI039
040	IMI040	0.41	18.56	0.313	2.437	0.056	27.932	0.330	0.214	27.932	0.283	0.214	0.1	IMI040
041	IMI041	0.88	12.49	0.147	2.437	0.103	27.685	0.332	0.214	27.685	0.284	0.214	0.1	IMI041
042	IMI042	1.19	10.10	0.109	2.437	0.110	27.584	0.333	0.214	27.584	0.285	0.214	0.1	IMI042
043	IMI043	1.56	8.48	0.083	2.437	0.138	27.411	0.334	0.214	27.411	0.286	0.214	0.1	IMI043
044	IMI044	8.62	12.96	1.558	2.437	0.526	28.973	0.348	0.215	28.973	0.299	0.215	0.1	IMI044
045	IMI045	9.02	13.26	1.510	2.437	0.558	28.925	0.348	0.215	28.925	0.298	0.215	0.1	IMI045
046	IMI046	9.18	13.29	1.486	2.437	0.572	28.906	0.348	0.215	28.906	0.298	0.215	0.1	IMI046
047	IMI047	11.06	13.07	1.503	2.437	0.524	28.849	0.346	0.215	28.849	0.297	0.215	0.1	IMI047
048	IMI048	11.28	13.07	1.477	2.437	0.552	28.832	0.346	0.215	28.832	0.297	0.215	0.1	IMI048
049	IMI049	1.84	10.65	1.585	2.437	0.153	28.768	0.338	0.214	28.768	0.290	0.214	0.1	IMI049
050	IMI050	2.04	11.32	1.459	2.437	0.205	28.739	0.337	0.214	28.739	0.289	0.214	0.1	IMI050
051	IMI051	13.32	12.80	1.474	2.437	0.500	28.819	0.345	0.215	28.819	0.296	0.215	0.1	IMI051
052	IMI052	13.71	12.70	1.440	2.437	0.537	28.800	0.344	0.215	28.800	0.295	0.215	0.1	IMI052
053	IMI053	13.93	12.56	1.418	2.437	0.582	28.790	0.344	0.215	28.790	0.295	0.215	0.1	IMI053
054	IMI054	0.44	23.16	0.310	2.437	0.056	28.553	0.331	0.214	28.553	0.284	0.214	0.1	IMI054
055	IMI055	0.68	19.52	0.245	2.437	0.067	28.475	0.331	0.214	28.475	0.283	0.214	0.1	IMI055

CODICE	NOME	AREA	IA	KS	N	K	A1	N1	M1	Α	N	М	QB	SEZIONE
056	IMI056	0.74	18.02	0.222	2.437	0.101	28.442	0.331	0.214	28.442	0.284	0.214	0.1	IMI056
057	IMI057	14.67	12.83	1.357	2.437	0.559	28.776	0.344	0.215	28.776	0.295	0.215	0.1	IMI057
058	IMI058	15.35	12.56	1.303	2.437	0.580	28.752	0.343	0.215	28.752	0.294	0.215	0.1	IMI058
059	IMI059	15.90	12.36	1.260	2.437	0.607	28.732	0.342	0.215	28.732	0.294	0.215	0.1	IMI059
060	IMI060	16.33	12.12	1.227	2.437	0.618	28.713	0.342	0.215	28.713	0.293	0.215	0.1	IMI060
061	IMI061	16.81	11.90	1.192	2.437	0.641	28.688	0.342	0.215	28.688	0.293	0.215	0.1	IMI061
062	IMI062	21.21	11.81	1.077	2.437	0.595	28.610	0.340	0.215	28.610	0.291	0.215	0.1	IMI062
063	IMI063	21.69	11.66	1.053	2.437	0.696	28.580	0.340	0.215	28.580	0.291	0.215	0.1	IMI063
064	IMI064	22.50	11.37	1.016	2.437	0.749	28.521	0.340	0.215	28.521	0.292	0.215	0.1	IMI064
065	IMI065	17.40	20.74	1.548	2.437	0.429	29.533	0.365	0.215	29.533	0.313	0.215	0.1	IMI065
066	IMI066	18.08	20.42	1.549	2.437	0.454	29.520	0.365	0.215	29.520	0.313	0.215	0.1	IMI066
067	IMI067	18.24	20.33	1.549	2.437	0.470	29.517	0.365	0.215	29.517	0.313	0.215	0.1	IMI067
068	IMI068	18.55	20.06	1.549	2.437	0.502	29.512	0.365	0.215	29.512	0.313	0.215	0.1	IMI068
069	IMI069	19.15	19.56	1.544	2.437	0.584	29.500	0.364	0.215	29.500	0.312	0.215	0.1	IMI069
070	IMI070	19.46	19.44	1.535	2.437	0.663	29.493	0.364	0.215	29.493	0.312	0.215	0.1	IMI070
071	IMI071	19.87	19.24	1.526	2.437	0.759	29.484	0.364	0.215	29.484	0.312	0.215	0.1	IMI071
072	IMI072	20.17	19.13	1.512	2.437	0.811	29.479	0.363	0.215	29.479	0.311	0.215	0.1	IMI072
073	IMI073	20.41	19.01	1.516	2.437	0.819	29.474	0.363	0.215	29.474	0.311	0.215	0.1	IMI073
074	IMI074	20.79	18.85	1.498	2.437	0.890	29.462	0.362	0.215	29.462	0.311	0.215	0.1	IMI074
075	IMI075	21.28	18.59	1.472	2.437	0.997	29.442	0.362	0.215	29.442	0.310	0.215	0.1	IMI075
076	IMI076	6.92	13.51	1.395	2.437	0.288	29.664	0.344	0.215	29.664	0.295	0.215	0.1	IMI076
077	IMI077	7.04	13.56	1.379	2.437	0.324	29.653	0.344	0.215	29.653	0.295	0.215	0.1	IMI077
078	IMI078	8.17	13.95	1.344	2.437	0.341	29.577	0.342	0.215	29.577	0.293	0.215	0.1	IMI078
079	IMI079	8.35	13.90	1.317	2.437	0.409	29.554	0.342	0.215	29.554	0.293	0.215	0.1	IMI079
080	IMI080	29.63	17.29	1.432	2.437	0.832	29.478	0.356	0.215	29.478	0.306	0.215	0.1	IMI080
081 082	IMI081 IMI082	30.13	17.23 17.21	1.417	2.437	0.875	29.458 29.448	0.356 0.356	0.215 0.215	29.458 29.448	0.305	0.215	0.1	IMI081 IMI082
083	IMI083		20.25	1.410	2.437		29.759	0.330	0.215	29.446	0.303	0.215	0.1	IMI083
084	IMI084	16.64 16.86	20.20	1.493	2.437	0.871	29.739	0.349	0.215	29.739	0.299	0.215	0.1	IMI083
085	IMI085	17.20	20.20	1.463	2.437	0.920	29.742	0.349	0.215	29.742	0.299	0.215	0.1	IMI084
086	IMI086	47.53	18.32	1.434	2.437	0.922	29.544	0.354	0.213	29.544	0.303	0.213	0.1	IMI086
087	IMI087	48.10	18.22	1.418	2.437	0.949	29.527	0.353	0.213	29.527	0.303	0.213	0.1	IMI087
088	IMI088	48.38	18.16	1.410	2.437	0.969	29.518	0.353	0.213	29.518	0.303	0.213	0.1	IMI088
089	IMI089	48.60	18.10	1.404	2.437	1.001	29.510	0.353	0.213	29.510	0.303	0.213	0.1	IMI089
090	IMI090	48.78	18.06	1.399	2.437	1.023	29.503	0.353	0.213	29.503	0.303	0.213	0.1	IMI090
091	IMI091	49.92	17.80	1.368	2.437	1.026	29.464	0.353	0.213	29.464	0.302	0.213	0.1	IMI091
092	IMI092	50.27	17.70	1.358	2.437	1.053	29.450	0.352	0.213	29.450	0.302	0.213	0.1	IMI092
093	IMI093	50.87	17.53	1.342	2.437	1.058	29.426	0.352	0.213	29.426	0.302	0.213	0.1	IMI093
094	IMI094	51.41	17.38	1.328	2.437	1.110	29.402	0.352	0.213	29.402	0.302	0.213	0.1	IMI094
095	IMI095	52.30	17.14	1.306	2.437	1.179	29.358	0.352	0.213	29.358	0.302	0.213	0.1	IMI095
096	IMI096	0.24	4.25	0.000	2.437	0.042	27.496	0.334	0.214	27.496	0.286	0.214	0.1	IMI096
097	IMI097	0.36	3.95	0.000	2.437	0.065	27.457	0.334	0.214	27.457	0.287	0.214	0.1	IMI097
098	IMI098	0.43	3.83	0.000	2.437	0.086	27.442	0.335	0.214	27.442	0.287	0.214	0.1	IMI098
099	IMI099	0.59	3.69	0.000	2.437	0.112	27.329	0.336	0.214	27.329	0.288	0.214	0.1	IMI099
100	IMI100	0.10	3.30	0.000	2.437	0.051	27.371	0.335	0.214	27.371	0.288	0.214	0.1	IMI100

Tabella 3-4 – Parametri del modello ALTO per i bacini

Nella Tabella 3-5 si riportano i parametri per i interbacini.

CODICE	NOME	AREA	IA	KS	N	К	A1	N1	M1	Α	N	М	QB	SEZIONE
001	IMI001	29.33	20.62	1.216	2.437	0.757	31.167	0.348	0.156	31.167	0.299	0.156	0.1	VI0001_A
002	IMI002	0.22	8.33	0.000	2.437	0.047	26.538	0.318	0.214	26.538	0.273	0.214	0.01	VI0016
003	IMI003	0.13	7.71	0.000	2.437	0.039	27.994	0.334	0.188	27.994	0.287	0.188	0.01	VI0025
004	IMI004	3.77	16.98	1.051	2.437	0.372	27.714	0.326	0.214	27.714	0.280	0.214	0.1	SE0001

CODICE	NOME	AREA	IA	KS	N	K	A1	N1	M1	Α	N	М	QB	SEZIONE
005	IMI005	0.11	16.63	0.856	2.437	0.028	27.145	0.320	0.204	27.145	0.275	0.204	0.01	SE0015
005	IMI003	0.11	19.41	0.010	2.437	0.028	28.160	0.320	0.204	28.160	0.273	0.204	0.01	SE0013
007	IMI007	10.19	10.37	1.341	2.437	0.512	28.210	0.334	0.104	28.210	0.286	0.104	0.01	MA0001A
008	IMI008	0.06	25.30	0.328	2.437	0.024	26.646	0.313	0.214	26.646	0.268	0.214	0.01	MA0004
009	IMI008	4.19	16.75	1.495	2.437	0.024	28.113	0.332	0.214	28.113	0.284	0.214	0.01	TR0001
010	IMI010	0.14	25.30	0.775	2.437	0.412	26.854	0.323	0.214	26.854	0.204	0.214	0.01	TR0005
011	IMI010	0.08	21.95	0.773	2.437	0.023	26.788	0.320	0.214	26.788	0.274	0.214	0.01	TR0011
012	IMI012	14.64	12.43	1.372	2.437	0.513	28.157	0.333	0.215	28.157	0.285	0.215	0.01	IMI011
013	IMI013	0.21	17.01	0.605	2.437	0.040	26.624	0.312	0.214	26.624	0.267	0.214	0.01	TR0012
014	IMI014	0.86	20.90	1.296	2.437	0.121	27.012	0.322	0.214	27.012	0.276	0.214	0.1	CP0001
015	IMI015	0.02	21.21	0.689	2.437	0.016	26.572	0.311	0.214	26.572	0.267	0.214	0.01	CP0005
016	IMI016	15.74	12.96	1.357	2.437	0.521	28.060	0.332	0.215	28.060	0.284	0.215	0.1	IMI016
017	IMI017	0.24	16.99	0.594	2.437	0.038	26.367	0.311	0.214	26.367	0.267	0.214	0.01	MA0024
018	IMI018	0.14	16.66	0.446	2.437	0.037	26.197	0.311	0.214	26.197	0.267	0.214	0.01	MA0033
019	IMI019	0.12	24.53	0.998	2.437	0.035	26.769	0.322	0.214	26.769	0.276	0.214	0.1	SC0001 A
020	IMI020	0.08	19.18	0.130	2.437	0.036	27.089	0.322	0.214	27.089	0.276	0.214	0.01	SC0003
021	IMI021	0.04	4.58	0.000	2.437	0.023	26.947	0.322	0.214	26.947	0.276	0.214	0.01	SC0012
022	IMI022	0.39	3.78	0.000	2.437	0.089	27.568	0.328	0.205	27.568	0.281	0.205	0.1	SC0022
023	IMI023	2.35	15.55	1.615	2.437	0.184	28.227	0.337	0.214	28.227	0.289	0.214	0.1	LE0001
024	IMI024	1.55	13.52	1.292	2.437	0.219	28.242	0.335	0.214	28.242	0.287	0.214	0.01	LE0010
025	IMI025	0.23	19.39	0.798	2.437	0.037	27.519	0.327	0.214	27.519	0.280	0.214	0.01	LE0023
026	IMI026	0.76	21.82	1.003	2.437	0.091	27.562	0.331	0.214	27.562	0.284	0.214	0.01	LE0037
027	IMI027	0.60	16.23	0.317	2.437	0.056	27.252	0.330	0.214	27.252	0.283	0.214	0.01	LE0057
028	IMI028	0.58	5.57	0.170	2.437	0.069	27.175	0.323	0.214	27.175	0.277	0.214	0.01	LE0101A
029	IMI029	0.28	3.30	0.000	2.437	0.053	27.859	0.331	0.199	27.859	0.284	0.199	0.01	LE0109
030	IMI030	2.69	19.75	1.280	2.437	0.192	27.947	0.335	0.214	27.947	0.288	0.214	0.1	TO0001
031	IMI031	0.45	21.92	0.629	2.437	0.052	27.669	0.325	0.214	27.669	0.278	0.214	0.01	TO0014
032	IMI032	0.30	11.71	0.343	2.437	0.040	27.421	0.324	0.214	27.421	0.278	0.214	0.01	TO0025
033	IMI033	0.28	5.92	0.076	2.437	0.049	27.318	0.324	0.214	27.318	0.277	0.214	0.01	TO0045
034	IMI034	0.14	3.30	0.000	2.437	0.040	27.003	0.327	0.214	27.003	0.280	0.214	0.01	TO0070
035	IMI035	1.72	17.17	0.677	2.437	0.131	27.815	0.331	0.214	27.815	0.284	0.214	0.1	CE0001
036	IMI036	0.51	4.29	0.082	2.437	0.066	27.273	0.333	0.214	27.273	0.286	0.214	0.01	CE0013
037	IMI037	0.17	3.30	0.000	2.437	0.039	27.317	0.334	0.214	27.317	0.286	0.214	0.01	CE0024
038	IMI038	0.38	3.30	0.008	2.437	0.056	27.199	0.333	0.214	27.199	0.286	0.214	0.01	CE0029
039	IMI039	0.16	3.30	0.000	2.437	0.041	26.722	0.336	0.214	26.722	0.288	0.214	0.01	CE0040
040	IMI040	0.41	18.56	0.313	2.437	0.056	27.932	0.330	0.214	27.932	0.283	0.214	0.1	RI0001
041	IMI041	0.47	7.13	0.000	2.437	0.060	27.466	0.333	0.214	27.466	0.286	0.214	0.01	RI0018
042	IMI042	0.31	3.30	0.000	2.437	0.050	27.301	0.336	0.214	27.301	0.288	0.214	0.01	RI0039
043	IMI043	0.37	3.30	0.000	2.437	0.074	26.854	0.338	0.214	26.854	0.290	0.214	0.01	RI0049
044	IMI044	8.62	12.96	1.558	2.437	0.526	28.973	0.348	0.215	28.973	0.299	0.215	0.1	CH0001
045	IMI045	0.41	19.59	0.488	2.437	0.050	28.031	0.336	0.214	28.031	0.288	0.214	0.01	CH0024
046	IMI046	0.16	15.08	0.083	2.437	0.033	27.969	0.336	0.214	27.969	0.288	0.214	0.01	CH0046
047	IMI047	1.88	12.07	1.592	2.437	0.210	28.672	0.340	0.214	28.672	0.292	0.214	0.01	CH0062
048	IMI048	0.22	13.12	0.144	2.437	0.044	27.987	0.335	0.214	27.987	0.288	0.214	0.01	CH0073
049	IMI049	1.84	10.65	1.585	2.437	0.153	28.768	0.338	0.214	28.768	0.290	0.214	0.1	CA0001
050	IMI050	0.21	17.26	0.355	2.437	0.053	28.459	0.332	0.214	28.459	0.285	0.214	0.01	CA0019
051	IMI051	13.32	12.80	1.474	2.437	0.500	28.819	0.345	0.215	28.819	0.296	0.215	0.1	IMI051
052	IMI052	0.39	9.23	0.265	2.437	0.052	28.079	0.333	0.214	28.079	0.285	0.214	0.01	CH0107
053	IMI053	0.22	3.68	0.000	2.437	0.052	28.098	0.332	0.214	28.098	0.285	0.214	0.01	CH0119
054	IMI054	0.44	23.16	0.310	2.437	0.056	28.553	0.331	0.214	28.553	0.284	0.214	0.1	OR0001
055	IMI055	0.24	12.80	0.123	2.437	0.036	28.331	0.330	0.214	28.331	0.283	0.214	0.01	OR0011
056	IMI056	0.07	3.30	0.000	2.437	0.030	28.122	0.331	0.214	28.122	0.284	0.214	0.01	OR0018
057	IMI057	14.67	12.83	1.357	2.437	0.559	28.776	0.344	0.215	28.776	0.295	0.215	0.1	IMI057
058	IMI058	0.68	6.73	0.133	2.437	0.076	28.154	0.329	0.214	28.154	0.282	0.214	0.01	CH0142
059	IMI059	0.55	6.77	0.056	2.437	0.064	27.975	0.330	0.214	27.975	0.283	0.214	0.01	CH0168
060	IMI060	0.43	3.32	0.000	2.437	0.058	27.810	0.331	0.214	27.810	0.284	0.214	0.01	CH0158
061	IMI061	0.48	4.48	0.000	2.437	0.052	27.658	0.334	0.214	27.658	0.286	0.214	0.01	CH0199

CODICE	NOME	AREA	IA	KS	N	K	A1	N1	M1	А	N	М	QB	SEZIONE
062	IMI062	4.40	11.52	0.640	2.437	0.295	28.300	0.332	0.214	28.300	0.285	0.214	0.01	CH0222
063	IMI063	0.48	5.14	0.000	2.437	0.073	27.242	0.341	0.214	27.242	0.292	0.214	0.01	CH0261
064	IMI064	0.81	3.51	0.000	2.437	0.106	27.009	0.346	0.214	27.009	0.296	0.214	0.01	CH0285
065	IMI065	17.40	20.74	1.548	2.437	0.429	29.533	0.365	0.215	29.533	0.313	0.215	0.1	RE0001
066	IMI066	0.68	12.35	1.550	2.437	0.082	29.291	0.355	0.214	29.291	0.305	0.214	0.01	RE0010
067	IMI067	0.17	10.72	1.550	2.437	0.035	29.294	0.354	0.214	29.294	0.303	0.214	0.01	RE0014_A
068	IMI068	0.30	3.30	1.552	2.437	0.060	29.285	0.354	0.214	29.285	0.303	0.214	0.01	RE0029
069	IMI069	0.60	4.40	1.379	2.437	0.069	29.217	0.351	0.214	29.217	0.301	0.214	0.01	RE0053
070	IMI070	0.31	11.80	0.947	2.437	0.058	29.128	0.345	0.214	29.128	0.296	0.214	0.01	RE0061
071	IMI071	0.41	9.78	1.109	2.437	0.071	29.098	0.343	0.214	29.098	0.294	0.214	0.01	RE0081
072	IMI072	0.30	12.24	0.588	2.437	0.047	29.140	0.340	0.214	29.140	0.292	0.214	0.01	RE0104
073	IMI073	0.24	8.83	1.824	2.437	0.069	29.102	0.340	0.214	29.102	0.292	0.214	0.01	RE0109
074	IMI074	0.38	10.25	0.511	2.437	0.056	28.841	0.335	0.214	28.841	0.288	0.214	0.01	RE0129
075	IMI075	0.49	7.60	0.375	2.437	0.085	28.562	0.335	0.214	28.562	0.287	0.214	0.01	RE0160
076	IMI076	6.92	13.51	1.395	2.437	0.288	29.664	0.344	0.215	29.664	0.295	0.215	0.01	Pl0001
077	IMI077	0.12	16.49	0.433	2.437	0.030	29.012	0.336	0.214	29.012	0.288	0.214	0.01	PI0005
078	IMI078	1.13	16.39	1.135	2.437	0.104	29.087	0.332	0.214	29.087	0.284	0.214	0.01	Pl0021
079	IMI079	0.18	11.56	0.081	2.437	0.044	28.421	0.334	0.214	28.421	0.286	0.214	0.01	Pl0032
080	IMI080	29.63	17.29	1.432	2.437	0.832	29.478	0.356	0.215	29.478	0.306	0.215	0.1	IMI080
081	IMI081	0.50	13.70	0.561	2.437	0.082	28.487	0.335	0.214	28.487	0.287	0.214	0.01	RE0200
082	IMI082	0.19	12.84	0.242	2.437	0.070	28.225	0.333	0.214	28.225	0.285	0.214	0.01	RE0202
083	IMI083	16.64	20.25	1.495	2.437	0.871	29.759	0.349	0.215	29.759	0.299	0.215	0.1	RS0001A_
084	IMI084	0.22	16.66	0.638	2.437	0.041	28.416	0.334	0.214	28.416	0.286	0.214	0.01	RS0010
085	IMI085	0.34	14.27	0.414	2.437	0.063	28.267	0.331	0.214	28.267	0.284	0.214	0.01	RS0032
086	IMI086	47.53	18.32	1.434	2.437	0.922	29.544	0.354	0.213	29.544	0.303	0.213	0.1	IMI086
087	IMI087	0.58	9.85	0.093	2.437	0.068	28.121	0.331	0.214	28.121	0.284	0.214	0.01	RE0217
088	IMI088	0.28	8.28	0.102	2.437	0.047	28.007	0.330	0.214	28.007	0.283	0.214	0.01	RE0227
089	IMI089	0.22	4.91	0.006	2.437	0.037	27.786	0.332	0.214	27.786	0.285	0.214	0.01	RE0233
090	IMI090	0.18	6.22	0.038	2.437	0.042	27.779	0.332	0.214	27.779	0.285	0.214	0.01	RE0240
091	IMI091	1.14	6.63	0.032	2.437	0.103	27.850	0.332	0.214	27.850	0.284	0.214	0.01	RE0246
092	IMI092	0.35	4.54	0.000	2.437	0.060	27.518	0.330	0.214	27.518	0.283	0.214	0.01	RE0254
093	IMI093	0.61	3.30	0.000	2.437	0.099	27.526	0.334	0.214	27.526	0.287	0.214	0.01	RE1041
094	IMI094	0.54	3.30	0.000	2.437	0.062	27.186	0.337	0.214	27.186	0.289	0.214	0.01	RE1030
095	IMI095	0.89	3.30	0.000	2.437	0.096	26.965	0.339	0.214	26.965	0.291	0.214	0.01	RE1018
096	IMI096	0.24	4.25	0.000	2.437	0.042	27.496	0.334	0.214	27.496	0.286	0.214	0.1	CO0001
097	IMI097	0.11	3.30	0.000	2.437	0.028	27.371	0.335	0.214	27.371	0.288	0.214	0.01	CO0022
098	IMI098	0.08	3.30	0.000	2.437	0.028	27.371	0.335	0.214	27.371	0.288	0.214	0.01	CO0035
099	IMI099	0.16	3.30	0.000	2.437	0.057	27.015	0.341	0.214	27.015	0.292	0.214	0.01	CO0042
100	IMI100	0.10	3.30	0.000	2.437	0.051	27.371	0.335	0.214	27.371	0.288	0.214	0.1	CO0065

Tabella 3-5 – Parametri del modello ALTO per i sottobacini

Nella Tabella 3-6 i valori delle portate per i vari tempi di ritorno dei bacini.

CODICE	NOME	TR	DURATA [H]	AFFLUSSO [MM]	KR	AFFLUSSO RIDOTTO [MM]	SUOLO LIBERO MEDIO [MM]	INFILTRAZ. [MM]	DEFLUSSO [MM]	PORTAT A AL COLMO [MC/S]
1	IMI001	30	2.882	72.704	0.941	68.419	4.225	12.64	47.814	132.405
2	IMI002	30	2.981	73.533	0.941	69.219	4.311	12.973	48.617	130.871
3	IMI003	30	3.152	74.737	0.942	70.424	4.5	13.66	49.712	126.758
4	IMI004	30	1.357	62.509	0.987	61.722	4.7	11.45	44.989	32.853
5	IMI005	30	1.403	63.051	0.987	62.239	4.651	11.376	45.507	32.886
6	IMI006	30	1.505	64.317	0.987	63.492	4.496	11.198	46.638	31.363
7	IMI007	30	1.493	65.724	0.968	63.652	5.155	10.952	52.7	77.796

CODICE	NOME	TR	DURATA [H]	AFFLUSSO [MM]	KR	AFFLUSSO RIDOTTO [MM]	SUOLO LIBERO MEDIO [MM]	INFILTRAZ. [MM]	DEFLUSSO [MM]	PORTAT A AL COLMO [MC/S]
8	IMI008	30	1.609	67.128	0.969	65.046	5.073	11.156	53.89	75.926
9	IMI009	30	1.404	64.107	0.986	63.232	6.545	16.247	46.155	34.468
10	IMI010	30	1.526	65.539	0.986	64.636	6.324	15.984	47.187	34.159
11	IMI011	30	1.596	66.321	0.986	65.401	6.174	15.836	47.778	33.371
12	IMI012	30	1.615	67.067	0.957	64.154	5.429	12.817	51.338	107.139
13	IMI013	30	1.696	67.947	0.957	64.995	5.323	12.964	52.032	104.304
14	IMI014	30	0.684	49.502	0.996	49.327	6.672	14.532	28.961	13.547
15	IMI015	30	0.733	50.578	0.996	50.397	6.528	14.336	29.979	12.812
16	IMI016	30	1.637	67.055	0.954	63.94	5.395	13.264	50.676	112.371
17	IMI017	30	1.704	67.758	0.953	64.601	5.308	13.364	51.237	110.204
18	IMI018	30	1.792	68.7	0.954	65.518	5.201	13.48	52.039	106.663
19	IMI019	30	0.394	41.06	0.999	41.037	5.554	11.48	17.121	3.158
20	IMI020	30	0.347	39.614	0.999	39.577	3.682	7.505	17.968	5.319
21	IMI021	30	0.406	41.679	0.999	41.635	3.08	6.339	22.682	5.319
22	IMI022	30	0.299	37.242	0.998	37.173	0	0	33.599	10.186
23	IMI023	30	0.793	54.059	0.991	53.578	7.708	15.464	38.114	33.162
24	IMI024	30	0.822	54.728	0.985	53.932	7.03	14.513	39.419	50.297
25	IMI025	30	0.949	57.356	0.985	56.504	6.773	14.849	41.655	49.644
26	IMI026	30	0.943	57.242	0.982	56.234	6.468	14.93	40.54	58.148
27	IMI027	30	1.04	58.84	0.981	57.705	5.835	13.634	42.037	59.589
28	IMI028	30	1.117	59.876	0.979	58.622	5.252	12.469	43.906	59.513
29	IMI029	30	1.291	62.193	0.979	60.883	4.866	11.906	46.524	55.312
30	IMI030	30	0.875	55.33	0.99	54.775	6.226	14.05	35.656	34.582
31	IMI031	30	0.975	57.293	0.989	56.64	5.698	12.974	37.282	38.404
32	IMI032	30	0.99	57.499	0.988	56.782	5.331	12.139	38.196	39.512
33	IMI033	30	1.105	59.274	0.987	58.498	4.859	11.279	40.809	38.814
34	IMI034	30	1.234	61.1	0.987	60.294	4.566	10.856	43.021	36.541
35	IMI035	30	0.651	49.971	0.993	49.624	3.476	7.499	33.363	28.857
36	IMI036	30	0.658	49.897	0.991	49.448	2.748	5.962	36.053	35.344
37	IMI037	30	0.614	48.718	0.99	48.24	2.557	5.535	35.608	37.484
38	IMI038	30	0.628	48.957	0.989	48.403	2.2	4.771	37.119	43.442
39	IMI039	30	0.787	52.68	0.989	52.079	2.021	4.502	41.203	40.982
40	IMI040	30	0.33	40.121	0.998	40.044	1.758	3.549	22.402	10.889
41	IMI041	30	0.396	42.153	0.996	41.985	0.809	1.648	30.261	18.435
42	IMI042	30	0.415	42.612	0.995	42.384	0.592	1.216	32.956	24.85
43	IMI043	30	0.49	44.723	0.993	44.42	0.442	0.921	36.539	28.885
44	IMI044	30	1.65	69.921	0.975	68.15	6.08	13.806	54.345	65.227
45	IMI045	30	1.796	71.553	0.974	69.704	5.852	14.183	55.521	65.184
46	IMI046	30	1.773	71.238	0.974	69.357	5.782	14.164	55.193	65.151
47	IMI047	30	1.645	69.485	0.968	67.24	5.909	13.721	53.52	82.785
48	IMI048	30	1.72	70.37	0.968	68.083	5.749	13.792	54.292	81.437
49	IMI049	30	0.53	48.068	0.992	47.706	6.673	10.607	37.1	32.011
50	IMI050	30	0.73	53.509	0.992	53.093	6.46	11.421	41.673	29.343
51	IMI051	30	1.58	68.563	0.961	65.891	5.809	13.286	52.605	102.418
52	IMI052	30	1.68	69.728	0.961	66.983	5.617	13.253	53.731	100.435
53	IMI053	30	1.8	71.144	0.961	68.359	5.425	13.246	55.113	96.737
54	IMI054	30	0.39	43.295	0.998	43.211	1.793	3.511	21.227	10.845
55	IMI055	30	0.36	42.029	0.997	41.9	1.399	2.757	23.509	16.567
56	IMI056	30	0.511	47.15	0.997	47.004	1.249	2.495	30.012	14.776
57	IMI057	30	1.799	71.09	0.959	68.168	5.261	13.358	54.81	104.275
58	IMI058	30	1.795	70.946	0.957	67.9	5.055	13.018	54.882	106.492
59	IMI059	30	1.927	72.396	0.957	69.25	4.763	12.926	56.324	107.035
60	IMI060	30	1.897	71.963	0.955	68.74	4.658	12.617	56.123	108.688
61	IMI061	30	1.958	72.578	0.954	69.268	4.472	12.417	56.851	109.248

			DURATA	AFFLUSSO		AFFLUSSO	SUOLO LIBERO	INFILTRAZ.	DEFLUSSO	PORTAT A AL
CODICE	NOME	TR	[H]	[MM]	KR	RIDOTTO [MM]	MEDIO	[MM]	[MM]	COLMO
	11 11 2 2 2						[MM]			[MC/S]
62	IMI062	30	1.835	70.928	0.942	66.84	4.107	11.165	54.907	143.128
63	IMI063	30	2.166	74.354	0.944	70.193	3.778	10.907	58.137	131.642
64	IMI064	30	2.309	75.66	0.943	71.36	3.571	10.552	59.528	130.015
65	IMI065	30	1.69	72.313	0.952	68.877	6.279	16.157	48.536	139.067
66	IMI066	30	1.757	73.167	0.951	69.607	6.205	16.146	49.487	139.603
67	IMI067	30	1.8	73.714	0.951	70.124	6.172	16.142	50.049	137.96
68	IMI068	30	1.886	74.783	0.951	71.137	6.068	16.132	51.187	134.815
69	IMI069	30	2.166	78.001	0.952	74.252	5.726	16.063	54.364	126.709
70	IMI070	30	2.377	80.286	0.953	76.487	5.486	15.96	56.451	118.746
71	IMI071	30	2.706	83.571	0.954	79.711	5.274	16.13	59.464	111.221
72	IMI072	30	2.826	84.61	0.954	80.706	5.607	17.068	60.439	108.07
73	IMI073	30	2.854	84.854	0.954	80.91	5.665	17.275	60.708	108.677
74	IMI074	30	3.03	86.412	0.954	82.409	6.104	18.538	62.174	104.93
75	IMI075	30	3.314	88.687	0.954	84.619	6.734	20.288	64.331	99.671
76	IMI076	30	1.012	61.851	0.977	60.434	6.283	13.353	47.081	80.679
77	IMI077	30	1.109	63.511	0.977	62.068	6.145	13.488	48.58	75.869
78	IMI078	30	1.154	64.088	0.974	62.42	5.958	13.817	48.603	84.132
79	IMI079	30	1.336	66.849	0.974	65.143	5.671	13.947	51.196	76.105
80	IMI080	30	2.833	84.226	0.935	78.774	5.375	16.353	60.544	154.982
81	IMI081	30	2.909	84.763	0.935	79.243	5.634	17.007	61.019	152.163
82	IMI082	30	2.965	85.233	0.935	79.685	5.707	17.248	61.433	151.191
83	IMI083	30	2.965	85.575	0.962	82.359	6.072	18.243	60.844	84.596
84	IMI084	30	3.132	86.938	0.963	83.691	6.337	19.12	62.041	82.609
85	IMI085	30	3.306	88.268	0.963	84.971	6.563	19.881	63.266	81.274
86	IMI086	30	3.213	86.835	0.909	78.926	5.789	17.805	59.714	220.282
87	IMI087	30	3.307	87.547	0.909	79.575	5.877	18.113	60.388	218.756
88	IMI088	30	3.377	88.075	0.909	80.075	5.957	18.386	60.883	217.075
89	IMI089	30	3.488	88.922	0.91	80.909	6.112	18.909	61.656	213.531
90	IMI090	30	3.565	89.489	0.91	81.462	6.214	19.252	62.17	211.305
91	IMI091	30	3.493	88.708	0.908	80.532	6.155	18.862	61.651	215.46
92	IMI092	30	3.585	89.365	0.908	81.155	6.254	18.867	62.288	213.359
93	IMI093	30	3.602	89.42	0.907	81.134	6.202	18.686	62.448	215.259
94	IMI094	30	3.779	90.651	0.908	82.321	6.391	18.707	63.614	210.842
95	IMI095	30	3.919	91.516	0.908	83.091	6.649	18.577	64.514	206.14
96	IMI096	30	0.173	31.662	0.999	31.622	0.000	0.000	27.579	9.887
97	IMI097	30	0.174	31.718	0.998	31.658	0.000	0.000	27.919	11.575
98	IMI098	30	0.291	37.557	0.998	37.479	0.000	0.000	33.863	11.635
99	IMI099	30	0.36	40.155	0.997	40.045	0.000	0.000	36.577	13.477
100	IMI100	30	0.197	32.872	0.999	32.855	0.000	0.000	29.686	3.714
1	IMI001	200	2.638	95.196	0.939	89.405	4.248	12.64	69.052	191.342
2	IMI002	200	2.666	95.805	0.939	89.952	4.386	12.973	69.674	189.418
3	IMI003	200	2.819	97.373	0.94	91.519	4.592	13.66	71.149	183.346
4	IMI004	200	1.177	90.149	0.987	88.969	4.764	11.45	72.409	53.577
5	IMI005	200	1.223	91.057	0.987	89.839	4.712	11.376	73.278	53.586
6	IMI006	200	1.325	93.143	0.987	91.906	4.549	11.198	75.22	51.029
7	IMI007	200	1.433	97.672	0.968	94.557	5.171	10.88	83.676	122.944
8	1MI008	200	1.489	98.723	0.968	95.592	5.131	11.014	84.578	120.017
9	IMI009	200	1.284	93.8	0.986	92.49	6.606	16.247	75.574	56.225
10	IMI010	200	1.346	94.915	0.986	93.561	6.439	15.984	76.352	55.74
11	IMI011	200	1.416	96.207	0.986	94.828	6.282	15.836	77.442	54.448
12	IMI012	200	1.495	98.65	0.956	94.27	5.489	12.673	81.598	170.86
13	IMI013	200	1.576	100.052	0.956	95.613	5.382	12.821	82.792	166.319
14	IMI014	200	0.504	67.338	0.996	67.084	6.776	14.532	46.936	23.257
15	IMI015	200	0.613	71.657	0.996	71.391	6.567	14.336	51.116	21.852
	L	<u> </u>	L		1	L	<u> </u>		<u> </u>	1

CODICE	NOME	TR	DURATA [H]	AFFLUSSO [MM]	KR	AFFLUSSO RIDOTTO [MM]	SUOLO LIBERO MEDIO [MM]	INFILTRAZ. [MM]	DEFLUSSO [MM]	PORTAT A AL COLMO [MC/S]
16	IMI016	200	1.517	98.669	0.953	93.985	5.455	13.121	80.864	179.624
17	IMI017	200	1.584	99.792	0.952	95.044	5.366	13.223	81.821	176.133
18	IMI017	200	1.672	101.287	0.952	96.5	5.258	13.34	83.16	170.100
19	IMI019	200	0.274	54.817	0.999	54.785	5.558	11.48	30.983	5.961
20	IMI019	200	0.274	51.865	0.999	51.812	3.671	7.505	30.983	9.818
21	IMI020	200	0.227	55.882	0.999	55.819	3.074	6.339	36.929	9.818
22	IMI021	200	0.299	54.946	0.999	54.843	0.000	0.000	51.27	15.318
23	IMI022	200	0.299	76.768	0.998	76.058	7.798	15.287	60.771	54.119
24	IMI023	200	0.073	80.068	0.991	78.883	7.798	14.433	64.451	81.331
25	IMI024	200	0.702	82.255	0.985	80.992	6.857	14.433	66.3	80.169
26	IMI025	200	0.829	82.235	0.983	80.738	6.546	14.091	65.194	94.595
27	IMI020	200	0.823	86.893	0.982	85.19	5.839	13.634	69.591	94.393
28	IMI027	200	0.98	87.137	0.98	85.258	5.308	12.469	70.667	96.408
29	IMI028	200	1.171	90.77	0.978	88.807	4.914	11.906	74.567	88.977
30	IMI029	200	0.755	79.033	0.978	78.212	6.268	14.05	59.233	57.54
31	IMI030	200	0.795	80.317	0.988	79.355	5.775	12.974	60.192	63.743
32	IMI031	200	0.793	82.658	0.988	81.594	5.353	12.974	63.13	65.215
33	IMI032	200	0.985	86.03	0.987	84.872	4.876	11.279	67.295	63.86
34	IMI033	200	1.054	87.668	0.986	86.463	4.621	10.856	69.353	59.858
35	IMI034	200	0.471	67.379	0.993	66.877	3.52	7.499	50.729	47.746
36	IMI035	200	0.538	70.043	0.993	69.386	2.766	5.962	56.05	57.064
37	IMI037	200	0.554	70.663	0.99	69.953	2.753	5.535	57.348	60.371
38	IMI037	200	0.568	70.003	0.988	70.241	2.198	4.771	58.981	69.33
39	IMI038	200	0.667	74.835	0.988	73.947	2.035	4.771	63.117	64.986
40	IMI040	200	0.007	56.355	0.988	56.244	1.732	3.549	38.619	18.736
41	IMI040	200	0.336	59.904	0.996	59.659	0.796	1.648	47.942	29.795
42	IMI041	200	0.355	60.709	0.995	60.375	0.790	1.216	50.953	39.511
43	IMI042	200	0.43	64.254	0.993	63.807	0.436	0.921	55.93	45.266
44	IMI043	200	1.53	102.788	0.993	100.127	6.142	13.641	86.486	104.082
45	IMI045	200	1.676	105.394	0.974	102.614	5.913	14.022	88.592	104.065
46	IMI046	200	1.653	104.902	0.973	102.075	5.843	14.006	88.069	104.018
47	IMI047	200	1.525	102.154	0.967	98.781	5.971	13.561	85.22	132.14
48	IMI048	200	1.6	103.562	0.967	100.124	5.811	13.636	86.488	129.923
49	IMI049	200	0.53	72.14	0.992	71.596	6.659	10.607	60.99	50.97
50	IMI050	200	0.67	78.015	0.992	77.397	6.488	11.34	66.057	46.659
51	IMI051	200	1.46	100.712	0.96	96.697	5.872	13.131	83.566	163.285
52	IMI052	200	1.56	102.576	0.96	98.451	5.678	13.101	85.35	159.968
53	IMI052	200	1.68	104.82	0.96	100.631	5.481	13.101	87.53	153.892
54	IMI053	200	0.27	57.533	0.998	57.413	1.742	3.511	35.464	19.379
55	IMI055	200	0.3	59.378	0.997	59.189	1.363	2.757	40.812	28.517
56	IMI056	200	0.451	67.894	0.997	67.678	1.212	2.495	50.699	24.59
57	IMI057	200	1.679	104.738	0.958	100.343	5.32	13.216	87.127	165.971
58	IMI058	200	1.675	104.529	0.956	99.947	5.114	12.881	87.065	169.238
59	IMI059	200	1.747	105.763	0.955	101.03	4.871	12.728	88.302	169.868
60	IMI060	200	1.777	106.154	0.954	101.305	4.715	12.489	88.816	172.279
61	IMI061	200	1.838	107.127	0.954	102.147	4.528	12.293	89.854	172.924
62	IMI062	200	1.715	104.571	0.941	98.422	4.157	11.165	86.6	226.348
63	IMI063	200	1.986	109.014	0.943	102.747	3.862	10.907	90.855	207.866
64	IMI064	200	2.189	111.998	0.942	105.526	3.609	10.552	93.798	204.901
65	IMI065	200	1.45	103.643	0.95	98.489	6.419	16.157	78.47	228.462
66	IMI066	200	1.517	105.073	0.949	99.729	6.345	16.146	79.933	228.872
67	IMI067	200	1.62	107.242	0.95	101.85	6.246	16.142	82.017	225.931
68	IMI068	200	1.706	108.97	0.95	103.491	6.14	16.132	83.782	220.36
69	IMI069	200	1.926	113.064	0.95	107.424	5.849	16.063	87.856	206.391
							L		1	

CODICE	NOME	TR	DURATA [H]	AFFLUSSO [MM]	KR	AFFLUSSO RIDOTTO [MM]	SUOLO LIBERO MEDIO [MM]	INFILTRAZ. [MM]	DEFLUSSO [MM]	PORTAT A AL COLMO [MC/S]
70	IMI070	200	2.137	116.777	0.951	111.057	5.595	15.96	91.341	193.115
71	IMI071	200	2.401	121.055	0.952	115.235	5.433	16.13	95.391	180.521
72	IMI072	200	2.565	123.447	0.952	117.561	5.729	17.068	97.635	175.271
73	IMI073	200	2.591	123.803	0.952	117.855	5.792	17.275	97.999	176.188
74	IMI074	200	2.815	126.994	0.952	120.96	6.19	18.538	101.004	169.889
75	IMI075	200	3.074	130.274	0.953	124.137	6.849	19.982	104.155	161.148
76	IMI076	200	0.952	91.119	0.977	88.997	6.306	13.278	75.719	128.847
77	IMI077	200	0.989	92.272	0.977	90.108	6.223	13.34	76.768	121.417
78	IMI078	200	1.034	93.314	0.973	90.812	6.035	13.674	77.138	134.903
79	IMI079	200	1.216	97.784	0.974	95.221	5.743	13.806	81.415	121.758
80	1MI080	200	2.565	122.856	0.933	114.631	5.517	16.353	96.728	249.588
81	IMI081	200	2.697	124.556	0.933	116.232	5.727	17.007	98.264	244.947
82	IMI082	200	2.75	125.247	0.933	116.88	5.804	17.248	98.886	243.322
83	IMI083	200	2.685	124.911	0.961	120.052	6.2	18.243	98.901	137.896
84	IMI084	200	2.836	126.899	0.961	121.993	6.482	19.12	100.725	134.579
85	IMI085	200	2.993	128.842	0.961	123.856	6.724	19.881	102.549	132.288
86	IMI086	200	2.991	127.276	0.907	115.387	5.873	17.805	96.442	354.602
87	IMI087	200	3.002	127.347	0.906	115.347	6.036	18.113	96.522	351.9
88	IMI088	200	3.065	128.116	0.906	116.071	6.122	18.386	97.246	349.059
89	IMI089	200	3.166	129.348	0.907	117.279	6.288	18.875	98.404	343.228
90	IMI090	200	3.236	130.172	0.907	118.081	6.393	18.907	99.174	339.566
91	IMI091	200	3.245	129.962	0.905	117.663	6.263	18.598	99.065	345.874
92	IMI092	200	3.331	130.923	0.906	118.573	6.363	18.578	99.994	342.321
93	IMI093	200	3.347	131.004	0.905	118.539	6.311	18.4	100.139	345.095
94	IMI094	200	3.422	131.779	0.905	119.224	6.571	18.311	100.912	337.753
95	IMI095	200	3.635	134	0.905	121.317	6.762	18.267	103.05	329.845
96	IMI096	200	0.113	41.199	0.999	41.144	0.000	0.000	37.101	15.209
97	IMI097	200	0.174	47.602	0.998	47.511	0.000	0.000	43.773	17.918
98	IMI098	200	0.231	52.162	0.998	52.049	0.000	0.000	48.433	17.81
99	IMI099	200	0.3	56.686	0.997	56.525	0.000	0.000	53.056	20.659
100	IMI100	200	0.197	49.334	0.999	49.309	0.000	0.000	46.139	5.675
1	IMI001	500	2.516	108.284	0.938	101.585	4.284	12.64	81.358	226.709
2	IMI002	500	2.54	109.044	0.938	102.267	4.428	12.973	82.118	224.584
3	IMI003	500	2.686	110.829	0.939	104.048	4.64	13.66	83.815	217.348
4	IMI004	500	1.117	108.083	0.987	106.649	4.788	11.45	90.146	67.075
5	IMI005	500	1.163	109.233	0.986	107.753	4.735	11.376	91.249	67.037
6	IMI006	500	1.265	111.86	0.987	110.355	4.568	11.198	93.726	63.834
7	IMI007	500	1.373	117.493	0.968	113.701	5.206	10.809	102.892	152.282
8	IMI008	500	1.429	118.814	0.968	115.002	5.166	10.943	104.059	148.646
9	IMI009	500	1.224	112.58	0.986	110.987	6.651	16.247	94.153	70.365
10	IMI010	500	1.286	113.991	0.986	112.345	6.48	15.984	95.216	69.764
11	IMI011	500	1.356	115.618	0.985	113.94	6.321	15.836	96.634	68.139
12	IMI012	500	1.435	118.737	0.955	113.405	5.528	12.601	100.804	212.292
13	IMI013	500	1.516	120.498	0.955	115.093	5.42	12.749	102.343	206.631
14	IMI014	500	0.444	78.652	0.996	78.347	6.817	14.532	58.272	29.647
15	IMI015	500	0.493	81.27	0.996	80.955	6.662	14.336	60.823	27.797
16	IMI016	500	1.457	118.784	0.952	113.082	5.494	13.05	100.031	223.364
17	IMI017	500	1.584	121.521	0.952	115.739	5.35	13.223	102.516	218.971
18	IMI018	500	1.612	122.068	0.952	116.239	5.295	13.27	102.969	211.888
19	IMI019	500	0.214	61.587	0.999	61.549	5.58	11.48	37.804	7.862
20	IMI020	500	0.227	63.1	0.999	63.036	3.658	7.505	41.502	12.668
21	IMI021	500	0.286	67.988	0.999	67.911	3.061	6.339	49.021	11.851
22	IMI022	500	0.299	66.3	0.998	66.176	0.000	0.000	62.602	18.61
23	IMI023	500	0.613	90.506	0.991	89.651	7.852	15.198	74.453	67.708

							011010			DODTAT
			DURATA	AFFLUSSO		AFFLUSSO	SUOLO LIBERO	INFILTRAZ.	DEFLUSSO	PORTAT A AL
CODICE	NOME	TR	[H]	[MM]	KR	RIDOTTO	MEDIO	[MM]	[MM]	COLMO
			[1 1]	[IVIIVI]		[MM]	[MM]	[IVIIVI]	[IVIIVI]	[MC/S]
24	IMI024	500	0.702	94.765	0.985	93.335	7.105	14.352	78.983	101.58
25	IMI025	500	0.829	100.074	0.985	98.537	6.842	14.691	83.846	100.046
26	IMI026	500	0.823	100.142	0.982	98.318	6.53	14.93	82.775	118.356
27	IMI027	500	0.92	103.597	0.98	101.535	5.88	13.634	86.004	121.102
28	IMI028	500	0.997	106.111	0.978	103.823	5.292	12.469	89.231	120.382
29	IMI029	500	1.111	108.784	0.978	106.399	4.948	11.906	92.219	110.83
30	IMI030	500	0.695	93.522	0.989	92.532	6.305	14.05	73.623	72.531
31	IMI031	500	0.735	95.188	0.988	94.027	5.805	12.974	74.929	80.358
32	IMI032	500	0.81	98.2	0.987	96.914	5.379	12.139	78.51	81.995
33	IMI033	500	0.925	102.506	0.986	101.104	4.898	11.279	83.584	79.99
34	IMI034	500	0.994	104.862	0.986	103.4	4.642	10.856	86.344	75.038
35	IMI035	500	0.471	81.975	0.993	81.365	3.506	7.499	65.216	60.139
36	IMI036	500	0.538	85.217	0.991	84.417	2.756	5.962	71.081	71.355
37	IMI037	500	0.554	85.97	0.99	85.107	2.544	5.535	72.502	75.239
38	IMI038	500	0.568	86.458	0.988	85.457	2.192	4.771	74.197	86.161
39	IMI039	500	0.667	91.047	0.988	89.967	2.028	4.502	79.137	80.634
40	IMI040	500	0.21	63.11	0.998	62.979	1.73	3.549	45.372	24.101
41	IMI041	500	0.336	72.881	0.996	72.582	0.79	1.648	60.866	37.276
42	IMI042	500	0.355	73.861	0.995	73.455	0.581	1.216	64.032	49.001
43	IMI043	500	0.43	78.174	0.993	77.63	0.434	0.921	69.753	55.916
44	IMI044	500	1.53	125.17	0.974	121.929	6.126	13.641	108.288	129.319
45	IMI045	500	1.616	126.956	0.973	123.571	5.952	13.942	109.63	129.35
46	IMI046	500	1.653	127.744	0.973	124.301	5.825	14.006	110.295	129.274
47	IMI047	500	1.465	122.924	0.967	118.818	6.011	13.482	105.336	164.195
48	IMI048	500	1.54	124.688	0.966	120.503	5.85	13.557	106.946	161.428
49	IMI049	500	0.47	84.276	0.992	83.624	6.7	10.519	73.105	63.33
50	IMI050	500	0.67	94.916	0.992	94.164	6.482	11.34	82.824	57.914
51	IMI051	500	1.46	122.641	0.96	117.752	5.858	13.131	104.621	202.86
52	IMI052	500	1.56	124.912	0.96	119.889	5.663	13.101	106.787	198.657
53	IMI053 IMI054	500	1.68	127.644	0.96	122.543	5.464	13.103	109.441	191.026
54	IMI054	500	0.27	69.996	0.998	69.85	1.724	3.511	47.901	24.962 36.106
55 56	IMI056	500	0.3	72.241	0.997	72.011	1.352	2.757	53.634	
57	IMI057	500	0.391 1.619	78.788 126.182	0.958	78.529 120.83	1.204 5.358	2.495 13.144	61.563 107.686	31.06 206.095
58	IMI057	500	1.615	125.931	0.956	120.83	5.151	12.813	107.539	210.015
59	IMI058	500	1.687	127.477	0.955	121.712	4.907	12.662	107.339	210.709
60	IMI060	500	1.717	127.974	0.954	122.068	4.751	12.425	109.643	213.609
61	IMI061	500	1.838	130.453	0.954	124.389	4.513	12.293	112.097	214.315
62	IMI062	500	1.715	127.341	0.941	119.853	4.143	11.165	108.032	280.471
63	IMI063	500	1.986	132.751	0.943	125.119	3.847	10.907	113.228	257.412
64	IMI064	500	2.128	135.279	0.942	127.393	3.636	10.552	115.718	253.586
65	IMI065	500	1.39	124.552	0.95	118.282	6.449	16.157	98.344	286.678
66	IMI066	500	1.457	126.346	0.949	119.844	6.375	16.146	100.129	286.995
67	IMI067	500	1.56	129.06	0.949	122.498	6.273	16.142	102.745	283.171
68	IMI068	500	1.586	129.702	0.949	123.036	6.232	16.132	103.489	276.055
69	IMI069	500	1.866	136.33	0.95	129.462	5.873	16.063	109.975	258.219
70	IMI070	500	2.077	140.948	0.951	133.981	5.614	15.96	114.343	241.463
71	IMI071	500	2.34	146.235	0.952	139.144	5.45	16.13	119.381	225.563
72	IMI072	500	2.5	149.128	0.952	141.956	5.751	17.068	122.115	218.934
73	IMI073	500	2.525	149.559	0.952	142.311	5.816	17.275	122.541	220.049
74	IMI074	500	2.672	152.157	0.952	144.798	6.293	18.538	125.027	212.098
75	IMI075	500	2.993	157.346	0.952	149.865	6.889	19.881	129.984	201.079
76	IMI076	500	0.952	110.96	0.977	108.376	6.294	13.278	95.098	160.092
77	IMI077	500	0.989	112.364	0.977	109.729	6.211	13.34	96.389	151.063

CODICE	NOME	TR	DURATA [H]	AFFLUSSO [MM]	KR	AFFLUSSO RIDOTTO [MM]	SUOLO LIBERO MEDIO [MM]	INFILTRAZ. [MM]	DEFLUSSO [MM]	PORTAT A AL COLMO [MC/S]
78	IMI078	500	1.034	113.632	0.973	110.586	6.022	13.674	96.912	167.913
79	IMI079	500	1.156	117.324	0.973	114.206	5.788	13.736	100.47	151.474
80	IMI080	500	2.498	148.402	0.932	138.378	5.546	16.353	120.557	311.066
81	IMI081	500	2.627	150.46	0.933	140.314	5.76	17.007	122.431	305.233
82	IMI082	500	2.678	151.294	0.933	141.096	5.838	17.248	123.189	303.183
83	IMI083	500	2.615	150.912	0.961	144.989	6.224	18.243	123.929	172.536
84	IMI084	500	2.762	153.315	0.961	147.332	6.509	19.12	126.16	168.347
85	IMI085	500	2.915	155.661	0.961	149.582	6.756	19.881	128.374	165.425
86	IMI086	500	2.842	152.34	0.905	137.856	5.972	17.805	119.089	441.631
87	IMI087	500	2.926	153.59	0.905	138.985	6.07	18.113	120.251	438.17
88	IMI088	500	2.987	154.516	0.905	139.858	6.157	18.386	121.125	434.576
89	IMI089	500	3.086	156.003	0.906	141.314	6.324	18.78	122.533	427.257
90	IMI090	500	3.154	156.996	0.906	142.28	6.43	18.811	123.469	422.658
91	IMI091	500	3.163	156.748	0.904	141.777	6.3	18.503	123.274	430.36
92	IMI092	500	3.162	156.651	0.904	141.596	6.471	18.386	123.21	425.865
93	IMI093	500	3.262	158.004	0.904	142.831	6.348	18.305	124.526	429.201
94	IMI094	500	3.333	158.906	0.904	143.622	6.609	18.213	125.41	419.971
95	IMI095	500	3.54	161.584	0.904	146.143	6.801	18.164	127.979	409.976
96	IMI096	500	0.113	50.124	0.999	50.057	0.00	0.00	46.014	18.739
97	IMI097	500	0.174	57.914	0.998	57.804	0.00	0.00	54.065	22.035
98	IMI098	500	0.231	63.462	0.998	63.325	0.00	0.00	59.709	21.879
99	IMI099	500	0.3	68.966	0.997	68.77	0.00	0.00	65.301	25.335
100	IMI100	500	0.137	53.134	0.999	53.104	0.00	0.00	49.935	6.953

Tabella 3-6 - Risultati del modello ALTO per i bacini

Le verifiche sono state condotte per una serie di scenari in modo da massimizzare le portate in ciascun bacino in funzione della durata dell'evento e del valore del coefficiente di ragguaglio Kr.

SCENARIO	AREA TOTALE	AREA BACINO	DURATA TR30	DURATA TR200	DURATA TR500
VICELL01	29.52	29.52	3.01	2.71	2.58
VICELL02	29.52	3.87	1.42	1.24	1.18
MARNIA01		10.21	1.55	1.46	1.40
MARNIA02		4.31	1.51	1.35	1.29
MARNIA03	16.04	14.85	1.70	1.58	1.52
MARNIA04		0.87	0.71	0.56	0.47
MARNIA05		16.04	1.75	1.63	1.60
LECCIO01		0.23	0.36	0.27	0.26
LECCIO02		3.82	0.88	0.77	0.74
LECCIO03	5.97	5.97	1.15	1.05	1.01
LECCIO04		3.09	0.95	0.81	0.75
LECCIO05		3.79	1.17	1.02	0.96
CETINA01	2.42	2.42	0.67	0.56	0.56
RICCHI01	22.09	1.01	0.41	0.35	0.33
RICCHI02		9.83	1.72	1.60	1.56
RICCHI03		1.94	0.63	0.60	0.57
RICCHI04		13.82	1.74	1.62	1.62
RICCHI05		0.62	0.42	0.34	0.32

RICCHI06		17.12	1.88	1.75	1.71
RICCHI07		22.09	2.24	2.09	2.06
RESCO01		18.07	1.78	1.57	1.50
RESCO02		19.49	2.42	2.15	2.09
RESCO03		20.66	3.01	2.76	2.67
RESCO04		7.62	1.15	1.05	1.03
RESCO05	51.21	30.23	2.94	2.72	2.65
RESCO06		16.90	3.13	2.84	2.76
RESCO07		48.76	3.45	3.14	3.06
RESCO08		51.21	3.72	3.43	3.32
RESCO09		0.34	0.24	0.20	0.19

Tabella 3-7 – Aree e durate per il calcolo dei vari scenari

3.2 Confronto con il modello Alto

I risultati del presente modello sono stati confrontati quelli del modello Alto su una serie di sezioni.

Nella Tabella 3-8 si riportano i parametri del modello Alto.

VICANO DI SANT 24965 ELLERO 30.62 20.86 1.44 2.83 0.91 27.120 0.411 0.174 24.023 0.363 0.224 0.1 24965 25268 CILIANA DI 5.10 16.92 1.20 1.96 0.55 26.924 0.410 0.176 23.991 0.365 0.223 0.1 25268 26376 MARNIA 17.60 17.84 1.27 2.58 0.61 27.42 0.426 0.175 24.246 0.361 0.224 0.1 26376 26544 26274 26276 26376	CODI	NOME	AREA	IA	KS	N	K	A1	N1	M1	А	N	М	QB	CE7IO
VICANO DI SANT 24966 ELLERO 30.62 20.86 1.44 2.83 0.91 27.120 0.411 0.174 24.023 0.363 0.224 0.1 24965 25268 CILIANA DI 5.10 16.92 1.20 1.96 0.55 26.924 0.410 0.176 23.991 0.358 0.223 0.1 25268 26376 MARNIA 17.60 17.78 1.27 2.58 0.61 27.442 0.426 0.175 24.246 0.361 0.225 0.1 26374 26.5554 MARNIA 17.60 17.84 1.27 2.59 0.60 27.443 0.426 0.175 24.246 0.361 0.225 0.1 26354 26724 NE DEL 1.58 20.41 0.86 2.53 0.16 27.746 0.436 0.175 24.246 0.361 0.225 0.01 26724 26724 NE DEL 1.58 20.41 0.86 2.53 0.16 27.746 0.436 0.175 24.295 0.363 0.225 0.1 26724 26725 MARNIA 17.36 17.90 1.28 2.59 0.58 27.541 0.429 0.175 24.395 0.363 0.225 0.1 26725 26343 MARNIA 16.80 17.77 1.29 2.53 0.60 27.642 0.433 0.175 24.395 0.363 0.225 0.1 26725 26343 MARNIA 16.80 17.77 1.29 2.53 0.60 27.746 0.436 0.175 24.395 0.363 0.225 0.1 26943 17.8AIA 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 26943 17.8AIA 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27001 DELLA 5.28 17.97 1.34 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27060 17.8AIA 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27060 17.8AIA 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27060 17.8AIA 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27150 17.8AIA 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27150 17.8AIA 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27160 17.8AIA 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27180 17.8AIA 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27180 17.8AIA 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27208 27217 MARNIA 12.32 17.13 1.30 2.49 0.55 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27208 27217 MARNIA 12.32 17.13 1.30 2.49 0.59 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27208 27217 MARNIA 12.32 17.13 1.30 2.49 0.59 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27208 27214 MARNIA 12.32 17.13 1.30 2.49 0.59 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27208 27214 MARNIA 1.20 1.66 1.5 0.85 2.33 0.37 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29952 29952 1.50AIA 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.4		NOIVIE	ANEA	IA	No	IN		AI	INI	IVII	A	IN	IVI	QB	SEZIO
24965 ELLERO 30.62 20.86 1.44 2.83 0.91 27.120 0.411 0.174 24.023 0.363 0.224 0.1 24965	OL	\#04410 DI													INL
24965 ELLERO 30.62 20.86 1.44 2.83 0.91 27.120 0.411 0.174 24.023 0.363 0.224 0.1 24965 25268 CILIANA DI 5.10 16.92 1.20 1.96 0.55 26.924 0.410 0.176 23.991 0.558 0.223 0.1 25268 26376 MARNIA 17.60 17.78 127 2.58 0.61 27.442 0.426 0.175 24.246 0.361 0.225 0.1 26376 26554 MARNIA 17.60 17.84 1.27 2.58 0.60 27.443 0.426 0.175 24.246 0.361 0.224 0.1 26554 0.6724 NE DEL 1.58 20.41 0.86 2.53 0.16 27.746 0.436 0.175 24.395 0.363 0.225 0.01 26724 26725 MARNIA 17.36 17.90 1.28 2.59 0.58 27.541 0.429 0.175 24.294 0.362 0.225 0.1 26725 26943 MARNIA 16.80 17.77 1.29 2.53 0.60 27.642 0.433 0.175 24.394 0.362 0.225 0.1 26943 27.001 DELLA 5.28 17.95 1.34 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27001 27000 27.000															
26376 MARNIA 17.60 17.78 1.27 2.58 0.61 27.442 0.426 0.175 24.246 0.361 0.225 0.1 26376	24965		30.62	20.86	1.44	2.83	0.91	27.120	0.411	0.174	24.023	0.363	0.224	0.1	24965
26554 MARNIA 17.60 17.84 1.27 2.58 0.60 27.443 0.426 0.175 24.246 0.361 0.224 0.1 26554	25268	CILIANA DI	5.10	16.92	1.20	1.96	0.55	26.924	0.410	0.176	23.991	0.358	0.223	0.1	25268
CAPANNO NE DEL 1.58 20.41 0.86 2.53 0.16 27.746 0.436 0.175 24.395 0.363 0.225 0.01 26724	26376	MARNIA	17.60	17.78	1.27	2.58	0.61	27.442	0.426	0.175	24.246	0.361	0.225	0.1	26376
26724 NE DEL 1.58 20.41 0.86 2.53 0.16 27.746 0.436 0.175 24.395 0.363 0.225 0.01 26724	26554	MARNIA	17.60	17.84	1.27	2.58	0.60	27.443	0.426	0.175	24.246	0.361	0.224	0.1	26554
26725 MARNIA 17.36 17.90 1.28 2.59 0.58 27.541 0.429 0.175 24.294 0.362 0.225 0.1 26725															
Della															
TRANA DELLA 5.28 17.95 1.34 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27001 27001 TRANA 27060 DELLA 5.28 17.97 1.34 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27060 27.150 DELLA 5.28 17.97 1.34 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27060 27.150 DELLA 5.28 17.97 1.34 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27150 TRANA 27188 DELLA 5.10 17.71 1.36 2.14 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27150 17.88 17.89 17.89 17.89 17.89 18.23 1.38 2.04 0.55 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27188 17.90 1.27188 17.90 1.2718 1.27208 DELLA 4.93 18.23 1.38 2.04 0.55 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27188 17.90 1.27188 17.90 1.2718 1.27208 1.2717 1.28912 1.28012 1.28912 1.28012 1.2				17.90				27.541	0.429	0.175	24.294	0.362		0.1	
DELLA 5.28 17.95 1.34 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27001	26943		16.80	17.77	1.29	2.53	0.60	27.642	0.433	0.175	24.344	0.362	0.225	0.1	26943
TRANA DELLA 5.28 17.97 1.34 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27060 TRANA 27150 DELLA 5.28 17.97 1.34 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27150 TRANA DELLA 5.10 17.71 1.36 2.14 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27150 TRANA DELLA 5.10 17.71 1.36 2.14 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27188 TRANA 27208 DELLA 4.93 18.23 1.38 2.04 0.55 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27208 27217 MARNIA 12.32 17.13 1.30 2.49 0.59 27.576 0.430 0.175 24.395 0.362 0.225 0.1 27217 28912 LECCIO DI 7.39 12.23 1.29 2.71 0.45 27.603 0.432 0.175 24.325 0.362 0.225 0.1 28912 29052 LECCIO DI 5.63 12.24 1.65 2.73 0.29 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29052 29283 LECCIO DI 5.46 11.82 1.68 2.70 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29283 29314 CONIGRS 3.34 13.72 1.79 2.61 0.21 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29314 TORNIA DELLA E 29551 TOFANAIA 5.10 16.15 0.85 2.31 0.32 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TORNIA DELLA E 30048 TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TORNIA DELLA E 30048 TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30048 TORNIA DELLA E 30071 TOFANIA 3.70 17.97 0.85 2.24 0.26 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30048 TORNIA DELLA E 30071 TOFANIA 3.70 17.97 0.85 2.24 0.26 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30048 TORNIA DELLA E 30071 TOFANIA 3.70 17.97 0.85 2.24 0.26 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30048	27001		5 28	17 95	1 34	2 12	0.40	27 746	0.436	0 175	24 395	0.363	0.225	0.1	27001
TRANA DELLA 5.28 17.97 1.34 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27150 TRANA 27188 DELLA 5.10 17.71 1.36 2.14 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27188 DELLA 5.10 17.71 1.36 2.14 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27188 DELLA 5.10 17.71 1.36 2.14 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27188 DELLA 4.93 18.23 1.38 2.04 0.55 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27208 27217 MARNIA 12.32 17.13 1.30 2.49 0.59 27.576 0.430 0.175 24.395 0.363 0.225 0.1 27217 28912 LECCIO DI 7.39 12.23 1.29 2.71 0.45 27.603 0.432 0.175 24.395 0.363 0.225 0.1 27217 28912 LECCIO DI 5.63 12.24 1.65 2.73 0.29 27.746 0.436 0.175 24.395 0.363 0.225 0.1 28912 29283 LECCIO DI 5.46 11.82 1.68 2.70 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29283 29314 CONIORSI 3.34 13.72 1.79 2.61 0.21 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29314 TORNIA DELLA E 29551 TOFANAIA 5.10 16.15 0.85 2.33 0.37 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29314 TORNIA DELLA E 29892 TOFANAIA 4.40 17.71 0.75 2.31 0.32 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TOFANAIA 5.10 16.15 0.85 2.31 0.32 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TOFANAIA 5.10 16.15 0.85 2.31 0.32 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TOFANAIA 5.10 16.15 0.85 2.31 0.32 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30048 TOFANAIA 5.10 17.97 0.85 2.24 0.26 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TOFANAIA 3.92 18.53 0.80 2.90 2.90 2.90 2.90 2.90 2.90 2.90 2.9															
27150 DELLA 5.28 17.97 1.34 2.12 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27150 TRANA DELLA 5.10 17.71 1.36 2.14 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27188 TRANA 27208 DELLA 4.93 18.23 1.38 2.04 0.55 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27208 27217 MARNIA 12.32 17.13 1.30 2.49 0.59 27.576 0.430 0.175 24.395 0.362 0.225 0.1 27217 28912 LECCIO DI 7.39 12.23 1.29 2.71 0.45 27.603 0.432 0.175 24.325 0.362 0.225 0.1 28912 29052 LECCIO DI 5.63 12.24 1.65 2.73 0.29 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29052 29283 LECCIO DI 5.46 11.82 1.68 2.70 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29283 29314 CONIORSI 3.34 13.72 1.79 2.61 0.21 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29314 TORNIA DELLA E 29551 TOFANAIA 5.10 16.15 0.85 2.33 0.37 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29551 TORNIA DELLA E 29892 TOFANAIA 4.40 17.71 0.75 2.31 0.32 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TORNIA DELLA E 30048 TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TORNIA DELLA E 30071 TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30048 TORNIA DELLA E 30071 TOFANAIA 3.70 17.97 0.85 2.24 0.26 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30071 RESCO CASCESE 30071 3	27060		5.28	17.97	1.34	2.12	0.40	27.746	0.436	0.175	24.395	0.363	0.225	0.1	27060
TRANA DELLA 5.10 17.71 1.36 2.14 0.40 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27188 TRANA DELLA 1.38 1.38 2.04 0.55 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27188 27208 DELLA 4.93 18.23 1.38 2.04 0.55 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27208 27217 MARNIA 12.32 17.13 1.30 2.49 0.59 27.576 0.430 0.175 24.312 0.362 0.225 0.1 27217 28912 LECCIO DI 7.39 12.23 1.29 2.71 0.45 27.603 0.432 0.175 24.325 0.362 0.225 0.1 28912 29052 LECCIO DI 5.63 12.24 1.65 2.73 0.29 27.746 0.436 0.175 24.395 0.363 0.225 0.1 28912 29283 LECCIO DI 5.46 11.82 1.68 2.70 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29283 29314 CONIORSI 3.34 13.72 1.79 2.61 0.21 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29314 TORNIA DELLA E 29551 TOFANAIA 5.10 16.15 0.85 2.33 0.37 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29314 TORNIA DELLA E 29892 TOFANAIA 4.40 17.71 0.75 2.31 0.32 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TORNIA DELLA E 30048 TO	27150		5 28	17 07	1 3/1	2 12	0.40	27 7/16	0.436	0.175	24 305	0.363	0.225	0.1	27150
TRANA DELLA	27 100		5.20	17.57	1.04	2.12	0.40	27.740	0.400	0.170	24.030	0.000	0.220	0.1	27100
DELLA 4.93 18.23 1.38 2.04 0.55 27.746 0.436 0.175 24.395 0.363 0.225 0.1 27208	27188	DELLA	5.10	17.71	1.36	2.14	0.40	27.746	0.436	0.175	24.395	0.363	0.225	0.1	27188
27217 MARNIA 12.32 17.13 1.30 2.49 0.59 27.576 0.430 0.175 24.312 0.362 0.225 0.1 27217	07000		4.00	40.00	4.00	0.04	0.55	07.740	0.400	0.475	04.005	0.000	0.005	0.4	07000
RESCO CASCESE															
29052 LECCIO DI 5.63 12.24 1.65 2.73 0.29 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29052															
29283 LECCIO DI 5.46 11.82 1.68 2.70 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29283															
29314 CONIORSI 3.34 13.72 1.79 2.61 0.21 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29314		1													
TORNIA DELLA E TOFANAIA 5.10 16.15 0.85 2.33 0.37 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29551 TORNIA DELLA E TOFANAIA 4.40 17.71 0.75 2.31 0.32 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TORNIA DELLA E TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30048 TORNIA DELLA E TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30048 TORNIA DELLA E TOFANAIA 3.70 17.97 0.85 2.24 0.26 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30071 RESCO CASCESE															
DELLA E TOFANAIA 5.10 16.15 0.85 2.33 0.37 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29551 TORNIA DELLA E TOFANAIA 4.40 17.71 0.75 2.31 0.32 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TORNIA DELLA E TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30048 TORNIA DELLA E TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30048 TORNIA DELLA E TOFANAIA 3.70 17.97 0.85 2.24 0.26 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30071 RESCO CASCESE	29314		3.34	13.72	1.79	2.61	0.21	27.746	0.436	0.175	24.395	0.363	0.225	0.1	29314
TORNIA DELLA E 29892 TOFANAIA 4.40 17.71 0.75 2.31 0.32 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TORNIA DELLA E 30048 TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30048 TORNIA DELLA E 30071 TOFANAIA 3.70 17.97 0.85 2.24 0.26 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30071 RESCO CASCESE															
DELLA E 29892 TOFANAIA 4.40 17.71 0.75 2.31 0.32 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892 TORNIA DELLA E 30048 TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30048 TORNIA DELLA E 30071 TOFANAIA 3.70 17.97 0.85 2.24 0.26 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30071 RESCO CASCESE	29551	TOFANAIA	5.10	16.15	0.85	2.33	0.37	27.746	0.436	0.175	24.395	0.363	0.225	0.1	29551
TOFANAIA 4.40 17.71 0.75 2.31 0.32 27.746 0.436 0.175 24.395 0.363 0.225 0.1 29892															
TORNIA DELLA E TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30048 TORNIA DELLA E TOFANAIA 3.70 17.97 0.85 2.24 0.26 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30071 RESCO CASCESE	29892		4 40	17 71	0.75	2.31	0.32	27 746	0.436	0.175	24 395	0.363	0.225	0.1	29892
30048 TOFANAIA 3.92 18.53 0.80 2.29 0.27 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30048 TORNIA DELLA E 30071 TOFANAIA 3.70 17.97 0.85 2.24 0.26 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30071 RESCO CASCESE	20002				017.0	2.0.	5.52	2717.10	0.100	0.170	211000	0.000	0.220	0	20002
TORNIA DELLA E TOFANAIA 3.70 17.97 0.85 2.24 0.26 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30071 RESCO CASCESE															
DELLA E TOFANAIA 3.70 17.97 0.85 2.24 0.26 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30071 RESCO CASCESE	30048		3.92	18.53	0.80	2.29	0.27	27.746	0.436	0.175	24.395	0.363	0.225	0.1	30048
30071 TOFANAIA 3.70 17.97 0.85 2.24 0.26 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30071 RESCO CASCESE															
CASCESE	30071	TOFANAIA	3.70	17.97	0.85	2.24	0.26	27.746	0.436	0.175	24.395	0.363	0.225	0.1	30071
I 30222 I FBUBBU I 1944 I 23.38 I 155 I 2.68 I 0.53 I 27.746 I 0.436 I 0.175 I 24.395 I 0.363 I 0.225 I 0.1 I 30222	30222	E BORRO	19.44	23.38	1.55	2.68	0.53	27.746	0.436	0.175	24.395	0.363	0.225	0.1	30222

SANTONIO 10	CODI	NOME	AREA	IA	KS	N	K	A1	N1	M1	А	N	М	QB	SEZIO
RESCO CASCESS E BORRO 1976 23.38 1.55 2.69 0.55 27.746 0.436 0.175 24.395 0.363 0.225 0.1 30.942		NOIVIL	AHLA	IA.	100	IN	IX		INI	IVII		IN	IVI	QD	
CASCESS SANTONIO 1976 23.98 1.55 2.69 0.55 2.7746 0.496 0.775 24.395 0.383 0.225 0.1 30942 CHESINO 10.24 17.33 1.59 2.52 0.48 27.746 0.496 0.176 24.395 0.383 0.225 0.1 31393 CHESINO 10.24 17.33 1.59 2.52 0.48 27.746 0.496 0.176 24.395 0.383 0.225 0.1 31393 CHESINO 10.64 16.50 1.99 2.62 0.61 27.746 0.496 0.176 24.395 0.383 0.225 0.1 31333 CHESINO 10.64 16.50 1.99 2.62 0.61 27.746 0.496 0.176 24.395 0.383 0.225 0.1 31333 CHESINO 10.64 16.50 1.99 2.62 0.61 27.746 0.496 0.176 24.395 0.383 0.225 0.1 31731 CHESINO 10.64 16.54 1.55 2.69 0.59 0.774 0.496 0.176 24.395 0.383 0.225 0.1 31731 CHESINO 10.64 16.54 1.55 2.69 0.59 0.59 0.7746 0.496 0.176 24.395 0.383 0.225 0.1 3014 CHESINO 10.64 16.54 1.55 2.69 0.59 0.59 0.7746 0.496 0.176 24.395 0.383 0.225 0.1 3014 CHESINO 10.64 16.54 1.55 2.69 0.59 0.59 0.7746 0.496 0.176 24.395 0.383 0.225 0.1 3014 CHESINO 10.64 16.54 1.55 2.69 0.59 0.59 0.7746 0.496 0.176 24.395 0.383 0.225 0.1 3014 CHESINO 10.64 16.54 1.55 2.69 0.395 0.22 27.746 0.496 0.176 24.395 0.385 0.228 0.1 3014 CHESINO 10.64 16.54 1.55 2.69 0.395 0.22 27.746 0.496 0.176 24.395 0.385 0.228 0.1 3014 CHESINO 10.64 16.54 1.55 2.69 0.395 0.22 27.746 0.496 0.176 24.395 0.385 0.228 0.1 3014 CHESINO 10.64 16.54 1.55 2.69 0.395 0.22 2.7746 0.496 0.176 24.395 0.385 0.228 0.1 3014 CHESINO 10.64 16.54 1.55 2.69 0.395 0.22 2.7746 0.496 0.176 24.395 0.395 0.228 0.1 3021 CHESINO 10.64 16.54 1.55 2.69 0.395 0.22 2.7746 0.496 0.175 24.395 0.395 0.228 0.1 3021 CHESINO 10.64 16.54 16.55 0.59 0.295 0.895 0.295 0.1 3014 CHESINO 10.64 16.55 0.596 0.295 0.895 0.295 0.496 0.175 0.496 0.175 0.496 0.295 0.1 3050 CHESINO 10.64 16.55 0.596 0.295 0.895 0.295 0.1 3050		S.ANTONIO													
Second S															
30.000 30.000 30.76 30.38 30.58 260 0.55 27.76 0.496 0.175 24.395 0.360 0.225 0.1 30.942															
	30342	S.ANTONIO	19.76	23.38	1.55	2.69	0.55	27.746	0.436	0.175	24.395	0.363	0.225	0.1	30342
RESCO CASCESE E BORRO STATE CASCES E BORRO STATE STATE CASCES E BORRO STATE STATE STATE CASCES E BORRO STATE STA	31294		10.24	17.33	1 59	2 52	0.48	27 746	0 436	0.175	24 395	0.363	0.225	0.1	31294
E BORRO STATE ST	01201	RESCO	19121	17.00	1100	2.02	51.10	2717 10	0.100	51116	2 11000	0.000	0.220	0	01201
31333 SANTONIO 2072 2265 1.56 267 0.62 27746 0.436 0.175 24.395 0.983 0.225 0.1 31333 31731 CHIESIMO N.P. 10.56 16.50 1.50 2.52 0.51 27746 0.436 0.175 24.395 0.383 0.225 0.1 31731 32015 CHIESIMO N.P. 10.91 16.43 1.50 2.52 0.52 27746 0.436 0.175 24.395 0.383 0.225 0.1 30015 32147 CHIESIMO 1.26 16.74 1.51 2.47 0.53 2.7746 0.436 0.175 24.395 0.383 0.225 0.1 30015 32280 0 2.46 12.73 0.44 1.66 0.30 2.5530 0.373 0.179 23.246 0.350 0.226 0.1 32280 3245 CHIESIMO 1.80 1.90 1.54 2.35 0.30 2.5530 0.373 0.179 23.246 0.360 0.226 0.1 32280 3245 CHIESIMO 1.50 1.50 1.50 1.50 0.21 24.643 0.347 0.181 2.2787 0.345 0.225 0.1 32380 3252 ALBERO 3.80 2.02 1.49 2.66 0.27 22.514 0.429 0.175 24.275 0.382 0.225 0.1 33501 33504 CHIESIMO 3.68 2.02 1.49 2.66 0.57 2.7044 0.190 20.375 0.319 0.234 0.1 33553 33505 N.E 1.38 17.97 0.34 2.45 0.51 2.7044 0.190 2.0375 0.319 0.234 0.1 33553 33506 N.E 1.88 17.97 0.34 2.45 0.51 2.7044 0.160 0.176 24.042 0.369 0.226 0.1 33553 33506 N.E 1.60 15.18 1.42 2.56 0.51 2.579 0.403 0.176 24.042 0.365 0.227 0.1 33596 33780 N.E 1.73 1.45 1.45 2.56 0.51 2.579 0.403 0.176 24.042 0.365 0.227 0.1 33596 33508 N.E 1.60 15.18 1.42 2.56 0.51 2.579 0.403 0.176 24.042 0.365 0.227 0.1 33596 33780 N.E 1.73 1.45 1.45 2.56 0.51 2.579 0.403 0.176 24.042 0.365 0.227 0.1 33596 33780 N.E 1.73 1.45 1.45 2.56 0.579 0.460 0.176 24.042 0.365 0.227 0.1 33596 33780 N.E 1.73 1.45 1.45 2.56 0.579 0.460 0.176 24.042 0.365 0.227 0.1 33596 33890 N.E 1.75 1.45 1.45 2.56 0.579 0.460 0.365 0.183															
STATE NE 10.56 15.50 15.50 15.50 2.52 0.51 27.746 0.436 0.175 24.395 0.383 0.225 0.1 3731	31333	S.ANTONIO	20.72	22.65	1.56	2.67	0.62	27.746	0.436	0.175	24.395	0.363	0.225	0.1	31333
CHESIMO 10.91 16.43 1.56 2.52 0.52 27.746 0.436 0.175 24.395 0.363 0.225 0.1 32015 32147 NE	31731		10.56	16 50	1 50	2 52	0.51	27 746	0.436	0.175	24 395	0.363	0.225	0.1	31731
CHESIMO 11.26		CHIESIMO													
22147 NE 11.26	32015		10.91	16.43	1.55	2.52	0.52	27.746	0.436	0.175	24.395	0.363	0.225	0.1	32015
3280	32147		11.26	16.74	1.51	2.47	0.53	27.746	0.436	0.175	24.395	0.363	0.225	0.1	32147
CHIESIMO 15.90 15.00 15.4 2.25 0.63 27.550 0.430 0.175 24.293 0.362 0.225 0.1 32.855	32218	0	2.99	12.36	0.36	2.08	0.29	25.465	0.371	0.179	23.213	0.350	0.228	0.1	32218
2488 NE 1390 1500 1.54 2.55 0.63 2750 0.430 0.175 24.293 0.362 0.225 0.1 32865 32521 DELLO 2.64 10.63 1.45 2.12 0.21 24.643 0.347 0.181 22.787 0.345 0.229 0.1 32525 33502 O 1.76 9.90 0.08 2.15 0.21 19.889 0.214 0.190 20.375 0.319 0.234 0.1 33502 33504 SANTONIO 23.58 22.02 1.49 2.66 0.77 27.514 0.429 0.175 24.275 0.362 0.225 0.1 33504 33505 NE 1.23 19.01 0.44 1.94 0.15 19.889 0.214 0.190 20.375 0.319 0.234 0.01 33553 33555 NE 1.28 1.58 1.797 0.34 2.43 0.14 19.889 0.214 0.190 20.375 0.319 0.234 0.01 33555 33566 NE 1.602 14.42 1.52 2.52 0.51 27.064 0.416 0.176 24.042 0.359 0.226 0.1 33565 33569 NE 1.602 14.42 1.52 2.52 0.51 26.579 0.403 0.177 23.790 0.366 0.226 0.1 33598 33718 NE 1.728 14.87 1.38 2.56 0.52 26.409 0.398 0.178 23.702 0.355 0.227 0.1 33780 33780 NE 1.728 14.87 1.38 2.58 0.52 26.409 0.398 0.178 23.702 0.355 0.227 0.1 33780 34254 NE 1.728 14.87 1.38 2.58 0.52 26.409 0.398 0.178 23.513 0.353 0.227 0.1 34628 34628 PITANO DI 8.10 14.30 1.21 2.44 0.49 23.788 0.305 0.178 23.513 0.363 0.227 0.1 34628 35716 NE 1.888 1.358 1.31 2.59 0.59 23.795 0.420 0.176 24.110 0.360 0.226 0.1 35250 35267 PITANO DI 9.96 1.15 2.65 0.67 24.853 0.355 0.178 23.529 0.354 0.227 0.1 358716 35867 RESCO CASCESE E BORRO S.3681 0.2149 1.50 2.90 0.92 25.349 0.367 0.179 23.204 0.360 0.227 0.1 35891 35861 O 0.910 21.63 1.51 2.90 0.92 25.349 0.367 0.180 23.153 0.350 0.227 0.1 35891 35861 O 0.910 0.910 0.910 0.92 0.92 0.92 0.938 0.979 0.939 0.920 0.92 0.939 0.920 0.939 0.920 0.920 0.939 0.920	32280		2.46	12.73	0.44	1.66	0.30	25.530	0.373	0.179	23.246	0.350	0.228	0.1	32280
Second Columbia	32485	NE	13.90	15.00	1.54	2.35	0.63	27.550	0.430	0.175	24.293	0.362	0.225	0.1	32485
33502	32521		2.64	10.63	1.45	2 12	0.21	24 643	0.347	<u></u> 1Ω1	22 727	0.345	0.220	0.1	32521
RESCO CASCESE E EORDRO 33504 S ANTONIO 23.58 22.02 1.49 2.60 0.77 27.514 0.429 0.175 24.275 0.362 0.225 0.1 33504 33.604 S ANTONIO 23.58 22.02 1.49 2.60 0.77 27.514 0.429 0.175 24.275 0.362 0.225 0.1 33504 33.604 S ANTONIO 23.58 12.3 19.01 0.44 1.94 0.15 19.989 0.214 0.190 20.375 0.319 0.234 0.01 33553 33555 NE 33556 NE 1.58 17.97 0.34 2.43 0.14 19.989 0.214 0.190 20.375 0.319 0.234 0.1 33555 33556 NE 33556 NE 1.58 17.97 0.34 2.43 0.14 19.989 0.214 0.190 20.375 0.319 0.234 0.1 33555 33556 NE 33557 CHIESIMO NE 16.02 14.42 1.52 2.52 0.51 27.064 0.416 0.176 24.042 0.359 0.226 0.1 33556 33598 NE 17.28 14.87 1.38 2.56 0.52 26.409 0.398 0.177 23.790 0.356 0.226 0.1 33780 CHIESIMO NE 17.28 14.87 1.38 2.56 0.52 26.409 0.398 0.178 23.702 0.355 0.227 0.1 33718 CHIESIMO NE 17.36 14.87 1.38 2.58 0.52 26.409 0.398 0.178 23.702 0.355 0.227 0.1 33780 CHIESIMO NE 18.24 14.57 1.30 2.59 0.57 26.043 0.387 0.178 23.513 0.353 0.227 0.1 34254 NE 18.24 14.57 1.30 2.59 0.57 26.043 0.387 0.178 23.513 0.353 0.227 0.1 34254 NE 18.24 14.57 1.30 2.59 0.58 26.006 0.386 0.178 23.493 0.353 0.227 0.1 34264 NE 18.83 13.58 1.31 2.59 0.58 26.006 0.386 0.178 23.493 0.353 0.227 0.1 34628 RESCO CASCESE E BORRO 35270 PITANO DI 9.86 13.93 1.12 2.44 0.48 23.868 0.325 0.183 22.385 0.341 0.230 0.1 34528 RESCO CASCESE E BORRO 35827 S ANTONIO 34.32 19.43 1.36 2.07 1.04 26.075 0.388 0.184 22.027 0.337 0.230 0.1 35270 RESCO CASCESE E BORRO 35887 S ANTONIO 34.32 19.43 1.36 2.07 1.04 26.075 0.388 0.178 23.529 0.354 0.227 0.1 35827 RESCO CASCESE E BORRO 35887 S ANTONIO 34.32 19.43 1.36 2.07 1.04 26.075 0.388 0.179 23.224 0.350 0.228 0.1 35851 RESCO CASCESE E BORRO 35887 S ANTONIO 34.32 19.43 1.36 2.07 1.04 26.075 0.388 0.179 23.224 0.350 0.228 0.1 35851 RESCO CASCESE E BORRO 35887 S ANTONIO 34.32 19.43 1.36 2.07 1.04 26.075 0.388 0.179 23.224 0.350 0.227 0.1 35881 RESCO CASCESE E BORRO 35887 S ANTONIO 34.32 19.43 1.56 2.90 0.92 25.349 0.367 0.180 23.153 0.350 0.227 0.1 35881 RESCO CASCESE E BORRO 35887 S ANTONIO 52.24 19.07 1.33 2.40 1.13 25.482 0.371 0.179 23.															
Second S		RESCO													
33504 SANTONIO 23.58 2.02 1.49 2.66 0.77 27.514 0.429 0.175 24.275 0.362 0.225 0.1 33504															
33553 NE	33504	S.ANTONIO	23.58	22.02	1.49	2.66	0.77	27.514	0.429	0.175	24.275	0.362	0.225	0.1	33504
CHIESIMO NE 1.58 17.97 0.34 2.43 0.14 19.989 0.214 0.190 20.375 0.319 0.234 0.1 33555	33553		1 23	19.01	0 44	1 94	0.15	19 989	0.214	0.190	20.375	0.319	0.234	0.01	33553
CHIESIMO NE 16.02 14.42 1.52 2.52 0.51 27.064 0.416 0.176 24.042 0.359 0.226 0.1 33556		CHIESIMO	1120		0	1101	51.10	10.000	5.2	0.100	20.070	0.010	0.20 .	0.0.	00000
33556 NE 16.02 14.42 1.52 2.52 0.51 27.064 0.416 0.176 24.042 0.359 0.226 0.1 33556 33598 CHIESIMO NE 16.80 15.18 1.42 2.56 0.51 26.579 0.403 0.177 23.790 0.356 0.226 0.1 33598 33718 NE 17.28 14.87 1.38 2.56 0.52 26.409 0.398 0.178 23.702 0.355 0.227 0.1 33718 33780 CHIESIMO NE 17.36 14.87 1.38 2.56 0.52 26.409 0.398 0.178 23.702 0.355 0.227 0.1 33780 34254 CHIESIMO NE 18.24 14.57 1.30 2.59 0.57 26.043 0.387 0.178 23.702 0.355 0.227 0.1 34254 34628 NE 18.83 13.58 1.31 2.59 0.57 26.043 0.387 0.178 23.513 0.353 0.227 0.1 34254 34828 PITANO DI 8.10 14.30 1.21 2.44 0.48 23.868 0.325 0.183 22.385 0.341 0.230 0.1 34828 RESCO CASCESE EBORRO 3.525 3.5270 2.545 3.545 3.545 3.545 3.545 3.545 3.545 3.545 35270 PITANO DI 9.86 13.93 1.12 2.54 0.49 23.178 0.305 0.184 22.027 0.337 0.230 0.1 35270 35270 PITANO DI 9.86 13.93 1.12 2.54 0.49 23.178 0.305 0.184 22.027 0.337 0.230 0.1 35270 35270 CHIESIMO NE 23.58 12.96 1.15 2.65 0.67 24.853 0.353 0.181 22.896 0.347 0.228 0.1 35716 RESCO CASCESE EDGIRGO SIMONTAN 0.901 21.63 1.51 2.90 0.91 25.448 0.370 0.179 23.204 0.350 0.227 0.1 35851 RESCO SIMONTAN 0.936 21.49 1.50 2.90 0.92 25.349 0.367 0.180 23.153 0.350 0.227 0.1 35891 RESCO SIMONTAN 0.936 21.49 1.50 2.90 0.92 25.349 0.367 0.180 23.153 0.350 0.227 0.1 35891 RESCO SIMONTAN 0.936 21.49 1.50 2.90 0.92 25.349 0.367 0.180 23.153 0.350 0.227 0.1 35891 RESCO CASCESE EBORRO SANTONIO 50.40 19.55 1.38 2.39 1.09 25.696 0.377 0.179 23.233 0.351 0.227 0.1 36847 RESCO CASCESE EBORRO SANTONIO 50.40 19.55 1.38 2.	33555		1.58	17.97	0.34	2.43	0.14	19.989	0.214	0.190	20.375	0.319	0.234	0.1	33555
33598 NE	33556	NE	16.02	14.42	1.52	2.52	0.51	27.064	0.416	0.176	24.042	0.359	0.226	0.1	33556
CHIESIMO NE	33598		16.80	15 18	1 42	2 56	0.51	26 579	0.403	0 177	23 790	0.356	0.226	0.1	33598
CHIESIMO NE 17.36 14.87 1.38 2.58 0.52 26.409 0.398 0.178 23.702 0.355 0.227 0.1 33780	00000	CHIESIMO	10.00	10.10	1.12			20.070	0.100	0.177	20.700	0.000	0.220	0.1	00000
33780 NE 17.36 14.87 1.38 2.58 0.52 26.409 0.398 0.178 23.702 0.355 0.227 0.1 33780	33718		17.28	14.87	1.38	2.56	0.52	26.409	0.398	0.178	23.702	0.355	0.227	0.1	33718
34254 NE	33780	NE	17.36	14.87	1.38	2.58	0.52	26.409	0.398	0.178	23.702	0.355	0.227	0.1	33780
34628	34254		18 24	14 57	1.30	2 50	0.57	26.043	0.387	0.178	23 513	0.353	0 227	0.1	34254
34828 PITANO DI 8.10		CHIESIMO		14.07	1.00					0.170				0.1	
RESCO CASCESE E BORRO 35259 S.ANTONIO 24.64 21.45 1.44 2.66 0.89 27.195 0.420 0.176 24.110 0.360 0.226 0.1 35259 35270 PITANO DI 9.86 13.93 1.12 2.54 0.49 23.178 0.305 0.184 22.027 0.337 0.230 0.1 35270 CHIESIMO NE 23.58 12.96 1.15 2.65 0.67 24.853 0.353 0.181 22.896 0.347 0.228 0.1 35716 RESCO CASCESE E BORRO S.ANTONIO 34.32 19.43 1.36 2.07 1.04 26.075 0.388 0.178 23.529 0.354 0.227 0.1 35827 RESCO SIMONTAN 35851 0 19.01 21.63 1.51 2.90 0.91 25.448 0.370 0.179 23.204 0.350 0.228 0.1 35851 RESCO CASCESE E BORRO SIMONTAN 35891 0 19.36 21.49 1.50 2.90 0.92 25.349 0.367 0.180 23.153 0.350 0.227 0.1 35891 RESCO CASCESE E BORRO S.ANTONIO 50.40 19.55 1.38 2.39 1.09 25.696 0.377 0.179 23.333 0.351 0.227 0.1 36847 RESCO CASCESE E BORRO S.ANTONIO 50.40 19.55 1.38 2.39 1.09 25.696 0.377 0.179 23.222 0.350 0.228 0.1 37572															
E BORRO S.ANTONIO 24.64 21.45 1.44 2.66 0.89 27.195 0.420 0.176 24.110 0.360 0.226 0.1 35259	34828		8.10	14.30	1.21	2.44	0.48	23.868	0.325	0.183	22.385	0.341	0.230	0.1	34828
35259 S.ANTONIO 24.64 21.45 1.44 2.66 0.89 27.195 0.420 0.176 24.110 0.360 0.226 0.1 35259															
STATE CHIESIMO NE 23.58 12.96 1.15 2.65 0.67 24.853 0.353 0.181 22.896 0.347 0.228 0.1 35716	35259		24.64	21.45	1.44	2.66	0.89	27.195	0.420	0.176	24.110	0.360	0.226	0.1	35259
35716 NE 23.58 12.96 1.15 2.65 0.67 24.853 0.353 0.181 22.896 0.347 0.228 0.1 35716 RESCO CASCESE E BORRO SANTONIO 34.32 19.43 1.36 2.07 1.04 26.075 0.388 0.178 23.529 0.354 0.227 0.1 35827 RESCO SIMONTAN 35851 O 19.01 21.63 1.51 2.90 0.91 25.448 0.370 0.179 23.204 0.350 0.228 0.1 35851 RESCO SIMONTAN 35891 O 19.36 21.49 1.50 2.90 0.92 25.349 0.367 0.180 23.153 0.350 0.227 0.1 35891 RESCO CASCESE E BORRO 36847 S.ANTONIO 50.40 19.55 1.38 2.39 1.09 25.696 0.377 0.179 23.233 0.351 0.227 0.1 36847 RESCO CASCESE E BORRO 37572 S.ANTONIO 52.24 19.07 1.33 2.40 1.13 25.482 0.371 0.179 23.222 0.350 0.228 0.1 37572	35270		9.86	13.93	1.12	2.54	0.49	23.178	0.305	0.184	22.027	0.337	0.230	0.1	35270
RESCO CASCESE E BORRO 35827 S.ANTONIO 34.32 19.43 1.36 2.07 1.04 26.075 0.388 0.178 23.529 0.354 0.227 0.1 35827 RESCO SIMONTAN 35851 O 19.01 21.63 1.51 2.90 0.91 25.448 0.370 0.179 23.204 0.350 0.228 0.1 35851 RESCO SIMONTAN 35891 O 19.36 21.49 1.50 2.90 0.92 25.349 0.367 0.180 23.153 0.350 0.227 0.1 35891 RESCO CASCESE E BORRO 36847 S.ANTONIO 50.40 19.55 1.38 2.39 1.09 25.696 0.377 0.179 23.333 0.351 0.227 0.1 36847 RESCO CASCESE E BORRO 37572 S.ANTONIO 52.24 19.07 1.33 2.40 1.13 25.482 0.371 0.179 23.222 0.350 0.228 0.1 37572	35716		23.58	12.96	1.15	2.65	0.67	24.853	0.353	0.181	22.896	0.347	0.228	0.1	35716
E BORRO S.ANTONIO 34.32 19.43 1.36 2.07 1.04 26.075 0.388 0.178 23.529 0.354 0.227 0.1 35827	557.10	RESCO	25.50	.2.50		00	3.57	21.000		5.151	000	2.077	5.225	5.1	33, 10
35827 S.ANTONIO 34.32 19.43 1.36 2.07 1.04 26.075 0.388 0.178 23.529 0.354 0.227 0.1 35827															
SIMONTAN O 19.01 21.63 1.51 2.90 0.91 25.448 0.370 0.179 23.204 0.350 0.228 0.1 35851 RESCO SIMONTAN O 19.36 21.49 1.50 2.90 0.92 25.349 0.367 0.180 23.153 0.350 0.227 0.1 35891 RESCO CASCESE E BORRO SANTONIO 50.40 19.55 1.38 2.39 1.09 25.696 0.377 0.179 23.333 0.351 0.227 0.1 36847 RESCO CASCESE E BORRO SANTONIO 52.24 19.07 1.33 2.40 1.13 25.482 0.371 0.179 23.222 0.350 0.228 0.1 37572	35827	S.ANTONIO	34.32	19.43	1.36	2.07	1.04	26.075	0.388	0.178	23.529	0.354	0.227	0.1	35827
35851 O 19.01 21.63 1.51 2.90 0.91 25.448 0.370 0.179 23.204 0.350 0.228 0.1 35851 RESCO SIMONTAN 0 19.36 21.49 1.50 2.90 0.92 25.349 0.367 0.180 23.153 0.350 0.227 0.1 35891 RESCO CASCESE E BORRO SANTONIO 50.40 19.55 1.38 2.39 1.09 25.696 0.377 0.179 23.333 0.351 0.227 0.1 36847 RESCO CASCESE E BORRO SANTONIO 52.24 19.07 1.33 2.40 1.13 25.482 0.371 0.179 23.222 0.350 0.228 0.1 37572															
SIMONTAN O 19.36 21.49 1.50 2.90 0.92 25.349 0.367 0.180 23.153 0.350 0.227 0.1 35891 RESCO CASCESE E BORRO 36847 S.ANTONIO 50.40 19.55 1.38 2.39 1.09 25.696 0.377 0.179 23.333 0.351 0.227 0.1 36847 RESCO CASCESE E BORRO 37572 S.ANTONIO 52.24 19.07 1.33 2.40 1.13 25.482 0.371 0.179 23.222 0.350 0.228 0.1 37572	35851	0	19.01	21.63	1.51	2.90	0.91	25.448	0.370	0.179	23.204	0.350	0.228	0.1	35851
35891 O 19.36 21.49 1.50 2.90 0.92 25.349 0.367 0.180 23.153 0.350 0.227 0.1 35891 RESCO CASCESE E BORRO 36847 S.ANTONIO 50.40 19.55 1.38 2.39 1.09 25.696 0.377 0.179 23.333 0.351 0.227 0.1 36847 RESCO CASCESE E BORRO 37572 S.ANTONIO 52.24 19.07 1.33 2.40 1.13 25.482 0.371 0.179 23.222 0.350 0.228 0.1 37572															
CASCESE E BORRO 36847 S.ANTONIO 50.40 19.55 1.38 2.39 1.09 25.696 0.377 0.179 23.333 0.351 0.227 0.1 36847 RESCO CASCESE E BORRO 37572 S.ANTONIO 52.24 19.07 1.33 2.40 1.13 25.482 0.371 0.179 23.222 0.350 0.228 0.1 37572	35891	0	19.36	21.49	1.50	2.90	0.92	25.349	0.367	0.180	23.153	0.350	0.227	0.1	35891
BORRO 36847 S.ANTONIO 50.40 19.55 1.38 2.39 1.09 25.696 0.377 0.179 23.333 0.351 0.227 0.1 36847 RESCO CASCESE E BORRO 37572 S.ANTONIO 52.24 19.07 1.33 2.40 1.13 25.482 0.371 0.179 23.222 0.350 0.228 0.1 37572															
RESCO CASCESE E BORRO S.ANTONIO 52.24 19.07 1.33 2.40 1.13 25.482 0.371 0.179 23.222 0.350 0.228 0.1 37572		E BORRO	F6 :-	10		6.5-		05.55		0.5	00.000	0.55	0.55-		000:=
CASCESE E BORRO 37572 S.ANTONIO 52.24 19.07 1.33 2.40 1.13 25.482 0.371 0.179 23.222 0.350 0.228 0.1 37572	36847		50.40	19.55	1.38	2.39	1.09	25.696	0.377	0.179	23.333	0.351	0.227	0.1	36847
37572 S.ANTONIO 52.24 19.07 1.33 2.40 1.13 25.482 0.371 0.179 23.222 0.350 0.228 0.1 37572		CASCESE													
	37572		52.24	19.07	1.33	2.40	1.13	25.482	0.371	0.179	23.222	0.350	0.228	0.1	37572

CODI CE	NOME	AREA	IA	KS	N	К	A1	N1	M1	А	N	М	QB	SEZIO NE
	CASCESE E BORRO S.ANTONIO													
38138	RESCO CASCESE E BORRO S.ANTONIO	55.44	19.32	1.32	2.41	1.17	25.528	0.372	0.179	23.245	0.350	0.228	0.1	38138

Tabella 3-8 – parametri del modello Alto

Nella Tabella 3-9i parametri del presente modello nelle stesse sezioni.

CODI	NOME	AREA	IA	KS	N	K	A1	N1	M1	А	N	М	QB	SEZIO NE
24965	VICANO DI SANT' ELLERO	29.67	20.47	1.20	2.44	0.83	31.121	0.348	0.157	31.121	0.298	0.157	0.1	24965
25268	CILIANA DI	3.95	17.01	1.03	2.44	0.43	27.704	0.326	0.214	27.704	0.280	0.214	0.1	25268
26376	MARNIA	16.11	13.05	1.34	2.44	0.58	28.017	0.331	0.215	28.017	0.284	0.215	0.1	26376
26554	MARNIA	16.04	13.03	1.34	2.44	0.56	28.025	0.331	0.215	28.025	0.284	0.215	0.1	26554
26724	CAPANNO NE DEL	0.88	20.90	1.28	2.44	0.14	27.000	0.322	0.214	27.000	0.276	0.214	0.1	26724
26725	MARNIA	15.80	12.98	1.35	2.44	0.53	28.052	0.332	0.215	28.052	0.284	0.215	0.1	26725
26943	MARNIA	14.85	12.50	1.36	2.44	0.54	28.134	0.332	0.215	28.134	0.285	0.215	0.1	26943
27001	TRANA DELLA	4.41	17.12	1.46	2.44	0.46	28.048	0.331	0.214	28.048	0.284	0.214	0.1	27001
27060	TRANA DELLA	4.35	17.06	1.47	2.44	0.45	28.064	0.331	0.214	28.064	0.284	0.214	0.1	27060
27150	TRANA DELLA	4.30	16.97	1.48	2.44	0.43	28.080	0.331	0.214	28.080	0.284	0.214	0.1	27150
27188	TRANA DELLA	4.25	16.87	1.48	2.44	0.42	28.095	0.331	0.214	28.095	0.284	0.214	0.1	27188
27208	TRANA DELLA	4.19	16.76	1.49	2.44	0.41	28.111	0.332	0.214	28.111	0.284	0.214	0.1	27208
27217	MARNIA	10.24	10.45	1.34	2.44	0.53	28.201	0.333	0.215	28.201	0.286	0.215	0.1	27217
28912	LECCIO DI	6.35	14.56	1.11	2.44	0.39	27.921	0.333	0.214	27.921	0.286	0.214	0.1	28912
29052	LECCIO DI	4.19	14.91	1.43	2.44	0.26	28.178	0.336	0.214	28.178	0.288	0.214	0.1	29052
29283	LECCIO DI	4.05	14.88	1.46	2.44	0.24	28.206	0.336	0.214	28.206	0.288	0.214	0.1	29283
29314	CONIORSI	2.35	15.55	1.62	2.44	0.18	28.227	0.337	0.214	28.227	0.289	0.214	0.1	29314
29551	TORNIA DELLA E TOFANAIA	3.85	17.83	1.00	2.44	0.33	27.797	0.332	0.214	27.797	0.285	0.214	0.1	29551
29892	TORNIA DELLA E TOFANAIA	3.53	19.03	1.09	2.44	0.25	27.848	0.333	0.214	27.848	0.285	0.214	0.1	29892
30048	TORNIA DELLA E TOFANAIA	2.81	19.76	1.25	2.44	0.22	27.936	0.335	0.214	27.936	0.287	0.214	0.1	30048

CODI	NOME	AREA	IA	KS	N	K	A1	N1	M1	Α	N	М	QB	SEZIO
CE														NE
30071	TORNIA DELLA E TOFANAIA	2.72	19.81	1.27	2.44	0.20	27.945	0.335	0.214	27.945	0.287	0.214	0.1	30071
30222	RESCO CASCESE E BORRO S.ANTONIO	17.65	20.60	1.55	2.44	0.46	29.528	0.365	0.215	29.528	0.313	0.215	0.1	30222
30342	RESCO CASCESE E BORRO S.ANTONIO	18.26	20.32	1.55	2.44	0.48	29.517	0.365	0.215	29.517	0.313	0.215	0.1	30342
31294	CHIESIMO NE	8.62	12.96	1.56	2.44	0.53	28.973	0.348	0.215	28.973	0.299	0.215	0.1	31294
31333	RESCO CASCESE E BORRO S.ANTONIO	18.85	19.80	1.54	2.44	0.59	29.504	0.365	0.215	29.504	0.313	0.215	0.1	31333
31731	CHIESIMO NE	8.86	13.10	1.53	2.44	0.57	28.945	0.348	0.215	28.945	0.298	0.215	0.1	31731
32015	CHIESIMO NE	9.11	13.23	1.50	2.44	0.57	28.915	0.348	0.215	28.915	0.298	0.215	0.1	32015
32147	CHIESIMO NE	9.20	13.28	1.48	2.44	0.58	28.904	0.348	0.215	28.904	0.298	0.215	0.1	32147
32218	0	2.95	11.58	0.41	2.44	0.20	27.549	0.332	0.214	27.549	0.285	0.214	0.1	32218
32280	0	2.42	13.37	0.50	2.44	0.17	27.656	0.332	0.214	27.656	0.285	0.214	0.1	32280
32485	CHIESIMO NE	11.28	13.07	1.48	2.44	0.55	28.832	0.346	0.215	28.832	0.297	0.215	0.1	32485
32521	ALBERO DELLO	2.04	11.32	1.46	2.44	0.20	28.739	0.337	0.214	28.739	0.289	0.214	0.1	32521
33502	0	1.56	8.48	0.08	2.44	0.14	27.411	0.334	0.214	27.411	0.286	0.214	0.1	33502
33504	RESCO CASCESE E BORRO S.ANTONIO	20.18	19.14	1.51	2.44	0.82	29.478	0.363	0.215	29.478	0.311	0.215	0.1	33504
33553	CHIESIMO NE	0.74	18.02	0.22	2.44	0.10	28.442	0.331	0.214	28.442	0.284	0.214	0.1	33553
33555	CHIESIMO NE	14.84	12.81	1.34	2.44	0.55	28.771	0.343	0.215	28.771	0.294	0.215	0.1	33555
33556	CHIESIMO NE	13.93	12.56	1.42	2.44	0.58	28.790	0.344	0.215	28.790	0.295	0.215	0.1	33556
33598	CHIESIMO NE	14.85	12.80	1.34	2.44	0.56	28.770	0.343	0.215	28.770	0.294	0.215	0.1	33598
33718	CHIESIMO NE	15.24	12.60	1.31	2.44	0.58	28.754	0.343	0.215	28.754	0.294	0.215	0.1	33718
33780	CHIESIMO NE	15.36	12.55	1.30	2.44	0.59	28.752	0.343	0.215	28.752	0.294	0.215	0.1	33780
34254	CHIESIMO NE	16.67	11.94	1.20	2.44	0.64	28.695	0.342	0.215	28.695	0.293	0.215	0.1	34254
34628	CHIESIMO NE	16.90	11.85	1.19	2.44	0.67	28.682	0.342	0.215	28.682	0.293	0.215	0.1	34628
34828	PITANO DI	7.11	13.51	1.37	2.44	0.37	29.645	0.344	0.215	29.645	0.295	0.215	0.1	34828
35259	RESCO CASCESE E BORRO S.ANTONIO	21.28	18.59	1.47	2.44	1.00	29.442	0.362	0.215	29.442	0.310	0.215	0.1	35259
35270	PITANO DI	8.35	13.90	1.32	2.44	0.41	29.554	0.342	0.215	29.554	0.293	0.215	0.1	35270
35716	CHIESIMO NE	22.50	11.37	1.02	2.44	0.75	28.521	0.340	0.215	28.521	0.292	0.215	0.1	35716

CODI CE	NOME	AREA	IA	KS	N	К	A1	N1	M1	А	N	М	QB	SEZIO NE
35827	RESCO CASCESE E BORRO S.ANTONIO	30.33	17.21	1.41	2.44	0.89	29.448	0.356	0.215	29.448	0.305	0.215	0.1	35827
35851	RESCO SIMONTAN O	16.97	20.18	1.48	2.44	0.96	29.734	0.349	0.215	29.734	0.299	0.215	0.1	35851
35891	RESCO SIMONTAN O	17.20	20.09	1.46	2.44	0.97	29.714	0.349	0.215	29.714	0.299	0.215	0.1	35891
36847	RESCO CASCESE E BORRO S.ANTONIO	48.87	18.03	1.40	2.44	1.04	29.500	0.353	0.213	29.500	0.303	0.213	0.1	36847
37572	RESCO CASCESE E BORRO S.ANTONIO	51.03	17.49	1.34	2.44	1.12	29.419	0.352	0.213	29.419	0.302	0.213	0.1	37572
37712	RESCO CASCESE E BORRO S.ANTONIO	51.46	17.37	1.33	2.44	1.12	29.399	0.352	0.213	29.399	0.302	0.213	0.1	37712
38138	RESCO CASCESE E BORRO S.ANTONIO	52.30	17.14	1.31	2.44	1.18	29.358	0.352	0.213	29.358	0.302	0.213	0.1	38138

Tabella 3-9 – parametri del presente modello

Nella Figura 3-11, nella Figura 3-12 e nella Figura 3-13 si riporta in confronto tra il modello Alto e il presente modello.

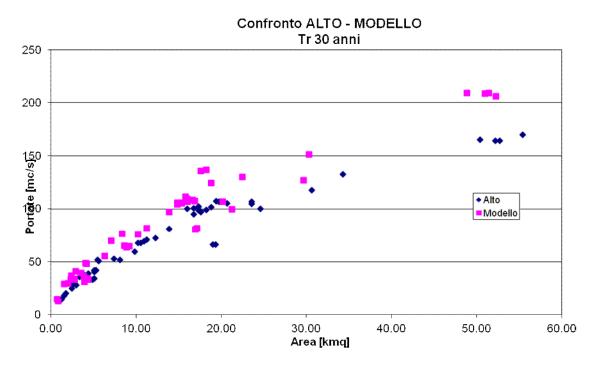


Figura 3-11 – Confronto tra il modello Alto e il presente modello per il tempo di ritorno di 30 anni

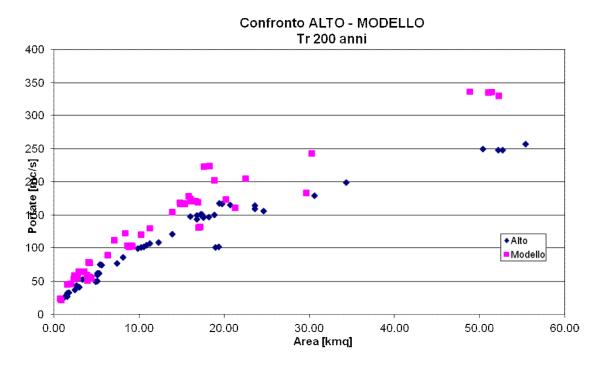


Figura 3-12 - Confronto tra il modello Alto e il presente modello per il tempo di ritorno di 200 anni

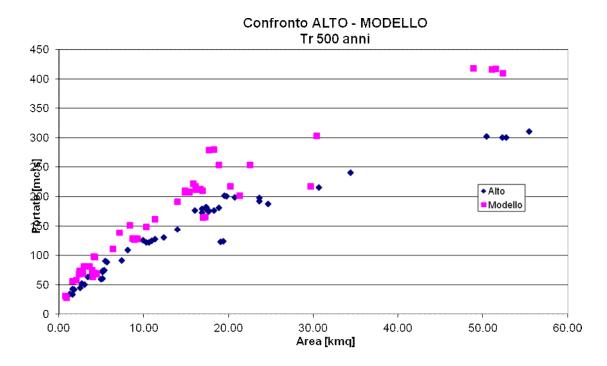


Figura 3-13 – Confronto tra il modello Alto e il presente modello per il tempo di ritorno di 500 anni

Si osserva un generale aumento delle portate dovuto in massima parte alle curve di possibilità pluviometrica aggiornate al 2012.

4 ANALISI IDRAULICA

Le verifiche idrauliche sono state condotte con un modello idraulico di moto vario con modellazione bidimensionale delle aree di esondazione.

Il modello di moto vario monodimensionale consente la simulazione del fenomeno di propagazione dell'onda di piena lungo i corsi d'acqua, mentre il modello bidimensionale permette la simulazione dei fenomeni propagazione delle esondazione nelle aree circostanti.

Ai fini della perimetrazione delle aree inondabili è stato fatto riferimento ai battenti idrici massimi (inviluppo) che si instaurano in ciascuna cella del modello digitale del terreno durante la simulazione numerica.

In questo studio sono stati studiati separatamente 6 diversi modelli bidimensionali per ogni corso d'acqua principale:

- 1. Modello bidimensionale "Vicell", borro Sant'Ellero e torrente Vicano;
- 2. Modello bidimensionale "Marnia", torrente Marnia, borro Trana e borro di Capannone;
- 3. Modello bidimensionale "Leccio", fosso San Carlino, fosso di Tornia e fosso di Leccio;
- 4. Modello bidimensionale "Cetina", fosso di Cetina;
- 5. Modello bidimensionale "Ricchi", torrente Chiesimone, borro di Ricavo, borro di Castelnuovo, borro Orecchie;
- 6. Modello bidimensionale "Resco", torrente Resco Cascese, torrente Resco Simontano, borro Pilano, borro di Colmate;

4.1 Il modello idraulico unidimensionale

La verifica idraulica è stata condotta secondo uno schema di moto vario basato sulle classiche equazioni del moto e di continuità per una corrente unidimensionale, associate a una opportuna equazione per la stima delle dissipazioni energetiche sia a carattere concentrato sia di tipo distribuito. Le equazioni, nella loro formulazione generale di De Saint Venant, esprimono le caratteristiche idrauliche (portata, carico piezometrico, altezza d'acqua, velocità) in funzione del tempo e dello spazio.

In generale, la risoluzione dello schema di moto vario viene ottenuta per via numerica, discretizzando le equazioni nel dominio spazio-temporale mediante opportuni schemi numerici. La soluzione viene pertanto ottenuta solo nei punti di discretizzazione (e non con continuità su tutto il dominio). Tali punti sono rappresentati dalla sezioni geometriche rilevate (discretizzazione spaziale) e dalla scansione temporale utilizzata nella rappresentazione dei fenomeni (discretizzazione temporale).

Il grado di risoluzione che si ottiene deriva quindi dalla densità delle sezioni rilevate e, per lo schema di moto vario, anche dal passo temporale adottato. Nel presente caso il passo temporale adottato è stato di:

- 2,5 minuti per il modello bidimensionale "Vicell", "Marnia", "Leccio", "Cetina" e "Ricchi";
- <u>5 minuti</u> per il modello bidimensionale "Resco".

In particolare, le equazioni di moto vario sono state applicate per lo studio della propagazione delle onde di piena, ovvero per la stima delle condizioni idrometriche dei corsi d'acqua analizzati interessati da questo fenomeno.

Il modello di moto vario si basa sulle equazioni di continuità e di moto per una corrente liquida incomprimibile e unidirezionale in condizioni non stazionarie; tali equazioni risultano, rispettivamente:

$$\frac{\partial H}{\partial x} = -\frac{1}{g} \frac{\partial U}{\partial t} - J \tag{4.1}$$

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} + q(x) = 0$$
 [4.2]

in cui:

A = area della sezione liquida [m²];

-Q = portata [m³/s];

-q(x) = portata laterale (positiva se entrante) [m²/s];

- H = carico totale della corrente [m];

-g = accelerazione di gravità [m/s²];

U = velocità media della corrente [m/s];

J = perdite di carico effettivo per unità di lunghezza;

x = ascissa corrente lungo l'alveo [m];

-t = tempo [s].

_

La perdita di carico effettivo può essere stimata con un'equazione analoga a quella adottata per il moto uniforme:

$$J = \frac{U|U|}{gC^2R} \tag{4.3}$$

ove, oltre ai simboli già noti, R è il raggio idraulico e C il coefficiente di resistenza esprimibile nella forma:

$$C = \frac{K_s R^{1/6}}{\sqrt{g}}$$
 [4.4]

ove K_s [m^{1/3}s⁻¹] è il coefficiente dimensionale di Gauckler-Strickler.

Il coefficiente C e i valori α e β , coefficienti di ragguaglio dell'energia e della quantità di moto, sono stati calcolati con il metodo di Engelund (1964), che suddivide la sezione in strisce verticali fornendo le seguenti espressioni:

$$C^{2} = \frac{1}{\Omega^{2}R} \left(\int cr^{\frac{1}{2}} d\Omega \right)^{2}$$
$$\beta = \Omega \frac{\int c^{2}r d\Omega}{\left(\int cr^{\frac{1}{2}} d\Omega \right)^{2}}$$
$$\alpha = \Omega^{2} \frac{\int c^{3}r^{\frac{3}{2}} d\Omega}{\left(\int cr^{\frac{1}{2}} d\Omega \right)^{3}}$$

dove:

- C = coefficiente di Chezy adimensionale;
- $-\alpha$ = coefficiente di ragguaglio dell'energia;
- β = coefficiente di ragguaglio della quantità di moto;
- Ω = area della sezione;
- R = raggio idraulico;
- c = coefficiente di Chezy adimensionale della singola striscia;
- r = raggio idraulico della singola striscia;
- $d\Omega$ = area della singola striscia.

Per includere nel modello gli effetti dissipativi indotti da variazioni di sezione, quali allargamenti o restringimenti, si sono valutate le perdite di carico effettivo addizionali, ΔH , mediante la formula:

$$\Delta H = \xi \Delta \left(\alpha \frac{Q^2}{2gA^2} \right)$$
 [4.5]

ove α è il coefficiente di ragguaglio della energia cinetica e ξ può assumere valori compresi tra 0.1 e 0.9 maggiori nel caso di allargamento della sezione e minori nel caso di restringimento.

La risoluzione delle equazioni sopra descritte viene svolta per via numerica, discretizzandole opportunamente alle differenze finite, e associandovi appropriate condizioni al contorno.

Le equazioni ridotte in forma numerica sono in generale risolte in forma implicita approssimando alle differenze finite le derivate e operando una media pesata per gli altri termini. In particolare sono utilizzate le seguenti formulazioni:

$$A = p_{s} p_{t} A_{i}^{k} + p_{s} (1 - p_{t}) A_{i}^{k+1} + (1 - p_{s}) p_{t} A_{i+1}^{k} + (1 - p_{s}) (1 - p_{t}) A_{i+1}^{k+1}$$

$$\frac{\partial A}{\partial s} = p_{t} \frac{A_{i+1}^{k} - A_{i}^{k}}{\Delta s} + (1 - p_{t}) \frac{A_{i+1}^{k+1} - A_{i}^{k+1}}{\Delta s}$$

$$\frac{\partial A}{\partial t} = p_{s} \frac{A_{i}^{k+1} - A_{i}^{k}}{\Delta t} + (1 - p_{s}) \frac{A_{i+1}^{k+1} - A_{i+1}^{k}}{\Delta s}$$
[4.6]

dove p_s e il peso della media spaziale e p_t il peso della media temporale, generalmente i valori a loro assegnati sono rispettivamente di 0.5 e 0.45. L'indice k viene utilizzato in riferito al tempo e l'indice i allo spazio.

Il modello fornisce la risoluzione delle equazioni in corrispondenza dei nodi di una griglia spaziotemporale ove, in corrispondenza delle sezioni fluviali predefinite, al variare del tempo si ricavano i valori delle grandezze idrauliche (portata, velocità, carico piezometrico, etc). A ciascun passo il programma bilancia le equazioni di moto e di continuità in modo iterativo fino al raggiungimento di una correzione su portate e livelli inferiore a una soglia prefissata.

Nell'ipotesi di corrente lenta, le condizioni al contorno da imporre al sistema precedentemente definito possono consistere nella attribuzione, nella sezione di chiusura di valle, di una scala di deflusso, di un idrogramma dei livelli o dell'altezza critica.

Nel caso di condizioni locali di corrente veloce, la profondità viene fissata sul valore critico. In particolare l'equazione di moto a valle della sezione viene sostituita dalla condizione di corrente critica nella sezione in esame.

La simulazione di eventuali fenomeni di esondazione è stata condotta associando al modello idraulico non stazionario appena descritto un modello quasi-bidimensionale o bidimensionale, definiti mediante la rappresentazione "a celle di accumulo" o distribuita delle aree inondabili adiacenti il corso d'acqua.

4.2 Il modello di inondazione quasi - bidimensionale

La modellazione *quasi-bidimensionale tipo Cunge*, integra il modello mono-dimensionale con quello a macro-aree interconnesse.

Nel modello tipo Cunge l'area potenzialmente inondabile viene immaginata composta da aree elementari connesse idraulicamente tra loro e con l'asta fluviale da soglie sfioranti. La definizione delle aree elementari che compongono le aree di potenziale inondazione deve avvenire con criteri di massima verosimiglianza del modello alla realtà: pertanto ad ogni struttura di contenimento identificabile sul territorio (quali i rilevati stradali e ferroviari, muri e argini) deve corrispondere il bordo di una o più aree.

La delimitazione e la modellazione di tali aree, dette aree di laminazione, per le quali risulta prevalente il fenomeno di invaso rispetto a quello di trasporto, avviene secondo le seguenti fasi:

 individuazione e acquisizione delle strutture di contenimento
 le aree elementari di potenziale esondazione sono delimitate da elementi di contorno rappresentati da argini, rilevati stradali e ferroviari, contenimenti naturali. L'individuazione di tali elementi è stata condotta sulla base cartografica della C.T.R. 1:2000 acquisita in forma digitale vettoriale;

 caratterizzazione morfologica delle aree di potenziale inondazione
 in tale fase si è proceduto alla definizione delle caratteristiche plano-altimetriche delle aree elementari sulla base della cartografia con l'obiettivo di ricavare la legge di riempimento quota-volume di inondazione in funzione dei livelli di piena nella forma:

$$V = A(y - y_0)^B$$
 [4.8]

in cui y₀ è la quota minima del terreno all'interno dell'area.

 definizione delle connessioni idrauliche sulla base dell'analisi dettagliata delle caratteristiche morfologiche, infrastrutturali ed idrauliche del territorio sono definite le caratteristiche delle connessioni idrauliche tra l'alveo principale e le aree di potenziale esondazione, e tra le aree stesse.

La simulazione del fenomeno esondativo si basa inoltre sulle seguenti ipotesi:

- i volumi idrici di inondazione si generano esclusivamente per tracimazione delle sommità arginali del corso d'acqua. Non sono considerati altri fenomeni quali, ad esempio, il collasso delle strutture arginali o fenomeni di rigurgito diversi da quelli già considerati nel presente studio. Anche gli elementi infrastrutturali, delimitanti le aree di potenziale inondazione (i.e. rilevati stradali, ferroviari, etc.), si considerano, al pari degli argini fluviali, tracimabili senza collasso:
- il fenomeno dell'allagamento di ciascuna area potenzialmente inondabile avviene seguendo la legge di riempimento quota-volume (4.8);
- il trasferimento dei volumi di esondazione, sia alveo/area sia area/area avviene tramite le connessioni idrauliche.

Il fenomeno dell'allagamento di ciascuna area avviene in modo sincrono, cioè non viene messo in conto il tempo effettivo connesso alla reale propagazione sul terreno dei volumi esondati.

La propagazione dei livelli idrici nelle celle avviene pertanto attraverso la sola legge di continuità dei volumi. A tale scopo è necessario considerare il volume accumulato nella singola cella e le sue variazioni dovute agli scambi di portata con le celle circostanti.

Ad ogni passo temporale l'equazione di continuità impone il bilancio tra i volumi netti transitati attraverso la cella e la variazione di volume locale, sotto le ipotesi che il volume accumulato in ciascuna cella sia univocamente correlato all'altezza idrica nella cella stessa, e che le portate scambiate siano funzione dei livelli a monte e a valle delle connessioni idrauliche.

In particolare, l'equazione di continuità per la generica area k-esima risulta la seguente:

$$A_{ck} \frac{\partial h_k}{\partial t} = \sum_i Q_{ki}(h_k, h_i)$$
 [4.9]

ove A_{ck} rappresenta la superficie allagata nell'area k-esima, h_k è l'altezza d'acqua relativa, Q_{ki} è la portata scambiata con l'area i-esima adiacente in funzione delle relative altezze idriche e la sommatoria è estesa a tutte le aree in comunicazione diretta con l'area k-esima.

4.3 Il modello di inondazione bidimensionale

Le aree di potenziale esondazione possono essere modellate anche come oggetto bidimensionale a patto di fornire un modello digitale del terreno rappresentativo della loro altimetria.

La risoluzione dello schema di inondazione bidimensionale è ottenuta mediante la risoluzione di un sistema alle derivate parziali, di tipo iperbolico, non lineare, costituito dalle equazioni complete di De Saint Venant scritte in forma bidimensionale.

Le equazioni di continuità e del moto nelle due direzioni possono essere scritte come segue:

$$\frac{\partial h}{\partial t} + \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0$$
 [4.10]

$$\frac{\partial M}{\partial t} + \frac{\partial (uM)}{\partial x} + \frac{\partial (vM)}{\partial y} + gh \frac{\partial H}{\partial x} + \frac{1}{\rho} \tau_x = 0$$
 [4.11]

$$\frac{\partial N}{\partial t} + \frac{\partial (uN)}{\partial x} + \frac{\partial (vN)}{\partial y} + gh\frac{\partial H}{\partial y} + \frac{1}{\rho}\tau_{y} = 0$$
 [4.12]

in cui:

- x = coordinata longitudinale;

y = coordinata trasversale;

t = coordinata temporale;

h = altezza d'acqua;

u = componente di velocità nella direzione x;

v = componente di velocità nella direzione y;

M = uh = flusso della corrente in direzione x;

N = uh = flusso della corrente in direzione y;

h = altezza d'acqua;

H = quota della superficie libera;

– densità dell'acqua;

- τ_x = sforzo tangenziale al fondo nella direzione x;

- au_y = sforzo tangenziale al fondo nella direzione y.

In particolare, gli sforzi tangenziali lungo x e y sono stati valutati nel modo seguente:

$$\tau_x = \frac{\rho g n^2 u \sqrt{u^2 + v^2}}{h^{1/3}}$$
 [4.13a]

$$\tau_{y} = \frac{\rho g n^{2} v \sqrt{u^{2} + v^{2}}}{h^{1/3}}$$
 [4.131b]

avendo indicato con n il coefficiente di scabrezza di Manning.

La risoluzione delle equazioni sopra scritte viene svolta numericamente mediante uno schema alle differenze finite di tipo implicito accoppiato ad appropriate condizioni al contorno.

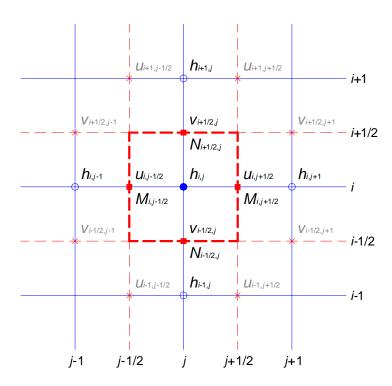


Figura 4-1 – Griglia di calcolo equazione di continuità

In particolare, facendo riferimento allo schema di Figura 4-1, sono state utilizzate le seguenti formulazioni nell'equazione di continuità:

$$\begin{cases}
\frac{\partial h}{\partial t} = \frac{h_{i,j}^{k+1} - h_{i,j}^{k}}{\Delta t} \\
\frac{\partial M}{\partial x} = p_{t} \left(\frac{M_{i,j+1/2}^{k} - M_{i,j-1/2}^{k}}{\Delta x} \right) + (1 - p_{t}) \left(\frac{M_{i,j+1/2}^{k+1} - M_{i,j-1/2}^{k+1}}{\Delta x} \right) \\
\frac{\partial N}{\partial y} = p_{t} \left(\frac{N_{i+1/2,j}^{k} - N_{i-1/2,j}^{k}}{\Delta y} \right) + (1 - p_{t}) \left(\frac{N_{i+1/2,j}^{k+1} - N_{i-1/2,j}^{k+1}}{\Delta y} \right)
\end{cases}$$
[4.14]

in cui:

$$\begin{split} M_{i,j-1/2}^{k} &= u_{i,j-1/2}^{k} \Big[p_{s} h_{i,j}^{k} + (1-p_{s}) h_{i,j-1}^{k} \Big]; & N_{i-1/2,j}^{k} &= v_{i-1/2,j}^{k} \Big[p_{s} h_{i,j}^{k} + (1-p_{s}) h_{i-1,j}^{k} \Big]; \\ M_{i,j+1/2}^{k} &= u_{i,j+1/2}^{k} \Big[p_{s} h_{i,j+1}^{k} + (1-p_{s}) h_{i,j}^{k} \Big]; & N_{i+1/2,j}^{k} &= v_{i+1/2,j}^{k} \Big[p_{s} h_{i+1,j}^{k} + (1-p_{s}) h_{i,j}^{k} \Big]; \\ M_{i,j-1/2}^{k+1} &= u_{i,j-1/2}^{k+1} \Big[p_{s} h_{i,j}^{k+1} + (1-p_{s}) h_{i,j-1}^{k+1} \Big]; & N_{i-1/2,j}^{k+1} &= v_{i-1/2,j}^{k+1} \Big[p_{s} h_{i,j}^{k+1} + (1-p_{s}) h_{i-1,j}^{k+1} \Big]; \\ M_{i,j+1/2}^{k+1} &= u_{i,j+1/2}^{k+1} \Big[p_{s} h_{i,j+1}^{k+1} + (1-p_{s}) h_{i,j}^{k+1} \Big]; & N_{i+1/2,j}^{k+1} &= v_{i+1/2,j}^{k+1} \Big[p_{s} h_{i+1,j}^{k+1} + (1-p_{s}) h_{i,j}^{k+1} \Big]. \end{split}$$

Mentre, facendo riferimento allo schema di Figura 4-2, sono state utilizzate le seguenti formulazioni nell'equazione del moto nella direzione x:

$$\begin{split} & \frac{\partial M}{\partial t} = \frac{M_{i,j}^{k+1} - M_{i,j}^{k}}{\Delta t} = \frac{(uh)_{i,j}^{k+1} - (uh)_{i,j}^{k}}{\Delta t} \\ & \frac{\partial (uM)}{\partial x} = p_{t} \left(\frac{(uM)_{i,j}^{k} - (uM)_{i,j-1}^{k}}{\Delta x} \right) + (1 - p_{t}) \left(\frac{(uM)_{i,j}^{k+1} - (uM)_{i,j-1}^{k+1}}{\Delta x} \right) \\ & \frac{\partial (vM)}{\partial y} = p_{t} \left(\frac{(vM)_{i+1/2,j-1/2}^{k} - (vM)_{i-1/2,j-1/2}^{k}}{\Delta y} \right) + (1 - p_{t}) \left(\frac{(vM)_{i+1/2,j-1/2}^{k+1} - (vM)_{i-1/2,j-1/2}^{k+1}}{\Delta y} \right) \\ & gh \frac{\partial H}{\partial x} = g \left[p_{t} \left(p_{s} h_{i,j-1}^{k} + (1 - p_{s}) h_{i,j}^{k} \right) + (1 - p_{t}) \left(p_{s} h_{i,j-1}^{k+1} + (1 - p_{s}) h_{i,j}^{k+1} \right) \right] \cdot \left[p_{t} \left(\frac{H_{i,j}^{k} - H_{i,j-1}^{k}}{\Delta x} \right) + (1 - p_{t}) \left(\frac{H_{i,j}^{k+1} - H_{i,j-1}^{k+1}}{\Delta x} \right) \right] \\ & \frac{1}{\rho} \tau_{x} = gn^{2} \left(p_{t} u_{i,j-1/2}^{k+1} + (1 - p_{t}) u_{i,j-1/2}^{k} \right) \cdot \left[p_{t} \left(p_{s} h_{i,j-1}^{k} + (1 - p_{s}) h_{i,j}^{k} \right) + (1 - p_{t}) \left(p_{s} h_{i,j-1}^{k+1} + (1 - p_{s}) h_{i,j}^{k+1} \right) \right]^{-1/3} \cdot \\ & \cdot \left\langle \left(p_{t} u_{i,j-1/2}^{k} + (1 - p_{t}) u_{i,j-1/2}^{k+1} \right)^{2} + \left\{ p_{t} \left[p_{s} \left(p_{s} v_{i-1/2,j-1}^{k} + (1 - p_{s}) v_{i-1/2,j}^{k} \right) + (1 - p_{s}) v_{i-1/2,j}^{k+1} \right) + (1 - p_{s}) \left(p_{s} v_{i+1/2,j-1}^{k+1} + (1 - p_{s}) v_{i+1/2,j}^{k+1} \right) \right]^{2} \right\}^{1/2} \end{split}$$

$$(4.16)$$

in cui:

$$(uM)_{i,j-1}^{k} = \left[p_{s} u_{i,j-3/2}^{k} \cdot u_{i,j-3/2}^{k} + (1 - p_{s}) u_{i,j-1/2}^{k} \cdot u_{i,j-1/2}^{k} \right] h_{i,j-1}^{k};$$

$$(uM)_{i,j}^{k} = \left[p_{s} u_{i,j-1/2}^{k} \cdot u_{i,j-1/2}^{k} + (1 - p_{s}) u_{i,j+1/2}^{k} \cdot u_{i,j+1/2}^{k} \right] h_{i,j}^{k};$$

$$(uM)_{i,j-1}^{k+1} = \left[p_{s} u_{i,j-3/2}^{k+1} \cdot u_{i,j-3/2}^{k+1} + (1 - p_{s}) u_{i,j-1/2}^{k+1} \cdot u_{i,j-1/2}^{k+1} \right] h_{i,j-1}^{k+1};$$

$$(uM)_{i,j}^{k+1} = \left[p_{s} u_{i,j-1/2}^{k+1} \cdot u_{i,j-1/2}^{k+1} + (1 - p_{s}) u_{i,j+1/2}^{k+1} \cdot u_{i,j+1/2}^{k+1} \right] h_{i,j}^{k+1};$$

$$(1.17a)_{i,j-1}^{k+1} = \left[p_{s} u_{i,j-1/2}^{k+1} \cdot u_{i,j-1/2}^{k+1} + (1 - p_{s}) u_{i,j+1/2}^{k+1} \cdot u_{i,j+1/2}^{k+1} \right] h_{i,j}^{k+1};$$

$$(vM)_{i-1/2,j-1/2}^{k} = \left[\left(p_{s} v_{i-1/2,j-1}^{k} + (1-p_{s}) v_{i-1/2,j}^{k} \right) \cdot \left(p_{s} u_{i-1,j-1/2}^{k} + (1-p_{s}) u_{i,j-1/2}^{k} \right) \right] \cdot \left[p_{s} \left(p_{s} h_{i-1,j-1}^{k} + (1-p_{s}) h_{i-1,j}^{k} \right) + (1-p_{s}) \left(p_{s} h_{i,j-1}^{k} + (1-p_{s}) h_{i,j}^{k} \right) \right] \right]$$

$$(vM)_{i+1/2,j-1/2}^{k} = \left[\left(p_{s} v_{i+1/2,j-1}^{k} + (1-p_{s}) v_{i+1/2,j}^{k} \right) \cdot \left(p_{s} u_{i,j-1/2}^{k} + (1-p_{s}) u_{i+1,j-1/2}^{k} \right) \right]$$

$$\cdot \left[p_{s} \left(p_{s} h_{i,j-1}^{k} + (1-p_{s}) h_{i,j}^{k} \right) + (1-p_{s}) \left(p_{s} h_{i+1,j-1}^{k} + (1-p_{s}) h_{i+1,j}^{k+1} \right) \right]$$

$$\cdot \left[p_{s} \left(p_{s} h_{i-1/2,j-1}^{k+1} + (1-p_{s}) h_{i-1/2,j}^{k+1} \right) \cdot \left(p_{s} u_{i-1,j-1/2}^{k+1} + (1-p_{s}) h_{i,j-1/2}^{k+1} \right) \right]$$

$$\cdot \left[p_{s} \left(p_{s} h_{i-1,j-1}^{k+1} + (1-p_{s}) h_{i-1,j}^{k+1} \right) + (1-p_{s}) \left(p_{s} h_{i,j-1}^{k+1} + (1-p_{s}) h_{i+1,j}^{k+1} \right) \right]$$

$$\cdot \left[p_{s} \left(p_{s} h_{i,j-1}^{k+1} + (1-p_{s}) h_{i-1,j}^{k+1} \right) + (1-p_{s}) \left(p_{s} h_{i+1,j-1}^{k+1} + (1-p_{s}) h_{i+1,j}^{k+1} \right) \right]$$

$$\cdot \left[p_{s} \left(p_{s} h_{i,j-1}^{k+1} + (1-p_{s}) h_{i,j}^{k+1} \right) + (1-p_{s}) \left(p_{s} h_{i+1,j-1}^{k+1} + (1-p_{s}) h_{i+1,j}^{k+1} \right) \right]$$

$$\cdot \left[p_{s} \left(p_{s} h_{i,j-1}^{k+1} + (1-p_{s}) h_{i,j}^{k+1} \right) + (1-p_{s}) \left(p_{s} h_{i+1,j-1}^{k+1} + (1-p_{s}) h_{i+1,j}^{k+1} \right) \right]$$

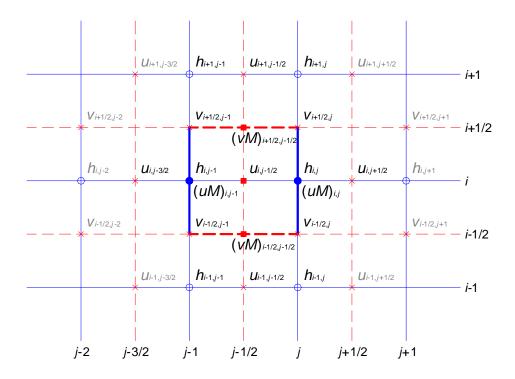


Figura 4-2 - Griglia di calcolo equazione di moto lungo X

Infine, facendo riferimento allo schema di Figura 4-3, sono state utilizzate le seguenti formulazioni nell'equazione del moto nella direzione y:

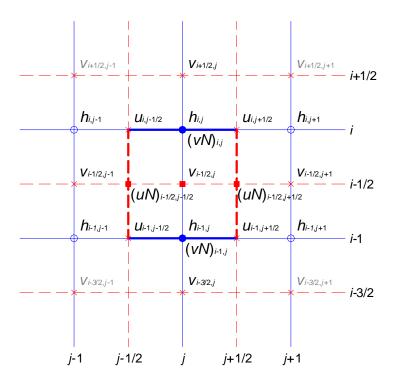


Figura 4-3 – Griglia di calcolo equazione di moto lungo Y

$$\begin{split} \frac{\partial N}{\partial t} &= \frac{N_{i,j}^{k+1} - N_{i,j}^{k}}{\Delta t} = \frac{(vh)_{i,j}^{k+1} - (vh)_{i,j}^{k}}{\Delta t} \\ \frac{\partial (uN)}{\partial x} &= p_{t} \left(\frac{(uN)_{i-1/2,j+1/2}^{k} - (uN)_{i-1/2,j-1/2}^{k}}{\Delta x} \right) + (1 - p_{t}) \left(\frac{(uN)_{i-1/2,j+1/2}^{k+1} - (uN)_{i-1/2,j-1/2}^{k+1}}{\Delta x} \right) \\ \frac{\partial (vN)}{\partial y} &= p_{t} \left(\frac{(vN)_{i,j}^{k} - (vN)_{i-1,j}^{k}}{\Delta y} \right) + (1 - p_{t}) \left(\frac{(vN)_{i,j}^{k+1} - (vN)_{i-1,j}^{k+1}}{\Delta y} \right) \\ gh \frac{\partial H}{\partial y} &= g \left[p_{t} \left(p_{s} h_{i-1,j}^{k} + (1 - p_{s}) h_{i,j}^{k} \right) + (1 - p_{t}) \left(p_{s} h_{i-1,j}^{k+1} + (1 - p_{s}) h_{i,j}^{k+1} \right) \right] \cdot \left[p_{t} \left(\frac{H_{i,j}^{k} - H_{i-1,j}^{k}}{\Delta y} \right) + (1 - p_{t}) \left(\frac{H_{i,j}^{k+1} - H_{i-1,j}^{k+1}}{\Delta y} \right) \right] \\ \frac{1}{\rho} \tau_{y} &= gn^{2} \left(p_{t} v_{i-1/2,j}^{k+1} + (1 - p_{t}) v_{i-1/2,j}^{k} \right) \cdot \left[p_{t} \left(p_{s} h_{i-1,j}^{k} + (1 - p_{s}) h_{i,j}^{k} \right) + (1 - p_{t}) \left(p_{s} h_{i-1,j}^{k+1} + (1 - p_{s}) h_{i,j}^{k+1} \right) \right]^{-1/3} \cdot \\ \cdot \left\langle \left\{ p_{t} \left[p_{s} \left(p_{s} u_{i-1,j-1/2}^{k+1} + (1 - p_{s}) u_{i,j-1/2}^{k} \right) + (1 - p_{s}) \left(p_{s} u_{i-1,j+1/2}^{k+1} + (1 - p_{s}) u_{i,j+1/2}^{k+1} \right) \right]^{-1/3} \cdot \\ \cdot \left\langle \left\{ p_{t} \left[p_{s} \left(p_{s} u_{i-1,j-1/2}^{k+1} + (1 - p_{s}) u_{i,j-1/2}^{k+1} \right) + (1 - p_{s}) \left(p_{s} u_{i-1,j+1/2}^{k+1} + (1 - p_{s}) u_{i,j+1/2}^{k+1} \right) \right]^{-1/3} \cdot \\ + (1 - p_{t}) \left[p_{s} \left(p_{s} u_{i-1,j-1/2}^{k+1} + (1 - p_{s}) u_{i,j-1/2}^{k+1} \right) + (1 - p_{s}) \left(p_{s} u_{i-1,j+1/2}^{k+1} + (1 - p_{s}) u_{i,j+1/2}^{k+1} \right) \right]^{-1/3} \cdot \\ + \left(p_{t} v_{i-1/2,j}^{k+1} + (1 - p_{t}) v_{i-1/2,j}^{k+1} \right)^{2} \right)^{1/2} \end{split}$$

in cui:

$$(uN)_{i-1/2,j-1/2}^{k} = \left[\left(p_{s} v_{i-1/2,j-1}^{k} + (1-p_{s}) v_{i-1/2,j}^{k} \right) \cdot \left(p_{s} u_{i-1,j-1/2}^{k} + (1-p_{s}) u_{i,j-1/2}^{k} \right) \right] \cdot \left[p_{s} \left(p_{s} h_{i-1,j-1}^{k} + (1-p_{s}) h_{i,j-1}^{k} \right) + (1-p_{s}) \left(p_{s} h_{i-1,j}^{k} + (1-p_{s}) h_{i,j}^{k} \right) \right] \right]$$

$$\cdot \left[p_{s} \left(p_{s} h_{i-1,j}^{k} + (1-p_{s}) v_{i-1/2,j+1}^{k} \right) \cdot \left(p_{s} u_{i-1,j+1/2}^{k} + (1-p_{s}) u_{i,j+1/2}^{k} \right) \right]$$

$$\cdot \left[p_{s} \left(p_{s} h_{i-1,j}^{k} + (1-p_{s}) h_{i,j}^{k} \right) + (1-p_{s}) \left(p_{s} h_{i-1,j+1}^{k} + (1-p_{s}) h_{i,j+1}^{k} \right) \right] \right]$$

$$\cdot \left[p_{s} \left(p_{s} h_{i-1/2,j-1}^{k+1} + (1-p_{s}) h_{i,j-1/2,j}^{k+1} \right) \cdot \left(p_{s} u_{i-1,j-1/2}^{k+1} + (1-p_{s}) u_{i,j-1/2}^{k+1} \right) \right]$$

$$\cdot \left[p_{s} \left(p_{s} h_{i-1,j-1}^{k+1} + (1-p_{s}) h_{i,j-1}^{k+1} \right) + (1-p_{s}) \left(p_{s} h_{i-1,j}^{k+1} + (1-p_{s}) h_{i,j-1/2}^{k+1} \right) \right]$$

$$\cdot \left[p_{s} \left(p_{s} h_{i-1,j}^{k+1} + (1-p_{s}) h_{i,j-1}^{k+1} \right) + (1-p_{s}) \left(p_{s} h_{i-1,j+1}^{k+1} + (1-p_{s}) h_{i,j+1/2}^{k+1} \right) \right]$$

$$\cdot \left[p_{s} \left(p_{s} h_{i-1,j}^{k+1} + (1-p_{s}) h_{i,j}^{k+1} \right) + (1-p_{s}) \left(p_{s} h_{i-1,j+1}^{k+1} + (1-p_{s}) h_{i,j+1/2}^{k+1} \right) \right]$$

$$\cdot \left[p_{s} \left(p_{s} h_{i-1,j}^{k+1} + (1-p_{s}) h_{i,j}^{k+1} \right) + (1-p_{s}) \left(p_{s} h_{i-1,j+1}^{k+1} + (1-p_{s}) h_{i,j+1/2}^{k+1} \right) \right]$$

$$(vN)_{i,j-1}^{k} = \left[p_{s} v_{i-3/2,j}^{k} \cdot v_{i-3/2,j}^{k} + (1 - p_{s}) v_{i-1/2,j}^{k} \cdot v_{i-1/2,j}^{k} \right] h_{i,j-1}^{k};$$

$$(vN)_{i,j}^{k} = \left[p_{s} v_{i-1/2,j}^{k} \cdot v_{i-1/2,j}^{k} + (1 - p_{s}) v_{i+1/2,j}^{k} \cdot v_{i+1/2,j}^{k} \right] h_{i,j}^{k};$$

$$(vN)_{i,j-1}^{k+1} = \left[p_{s} v_{i-3/2,j}^{k+1} \cdot v_{i-3/2,j}^{k+1} + (1 - p_{s}) v_{i-1/2,j}^{k+1} \cdot v_{i-1/2,j}^{k+1} \right] h_{i,j-1}^{k+1};$$

$$(vN)_{i,j}^{k+1} = \left[p_{s} v_{i-1/2,j}^{k+1} \cdot v_{i-1/2,j}^{k+1} + (1 - p_{s}) v_{i+1/2,j}^{k+1} \cdot v_{i+1/2,j}^{k+1} \right] h_{i,j}^{k+1};$$

$$(vN)_{i,j}^{k+1} = \left[p_{s} v_{i-1/2,j}^{k+1} \cdot v_{i-1/2,j}^{k+1} + (1 - p_{s}) v_{i+1/2,j}^{k+1} \cdot v_{i+1/2,j}^{k+1} \right] h_{i,j}^{k+1};$$

dove p_s è il peso della media spaziale e p_t il peso della media temporale (l'indice k è riferito al tempo, mentre gli indici i e j sono riferiti rispettivamente alle coordinate lungo x e y). I valori utilizzati per p_s e p_t sono rispettivamente di 0.5 e 0.45 che dalle prove effettuate risultano essere i più affidabili per la risoluzione del sistema.

Il modello fornisce la risoluzione delle equazioni in corrispondenza dei nodi di una griglia spaziotemporale ove, al variare del tempo, si ricavano i valori delle grandezze idrauliche (portata, velocità, carico piezometrico, etc). A ciascun passo il programma bilancia le equazioni di moto e di continuità in modo iterativo fino al raggiungimento di una correzione su portate e livelli inferiore a una soglia prefissata. La propagazione delle esondazioni avviene in condizioni di corrente lenta.

4.4 La modellazione idraulica delle connessioni idrauliche

Le soglie sfioranti sono assimilate a stramazzi in parete grossa, con possibilità di funzionamento bidirezionale, in condizioni di deflusso libero oppure rigurgitato in funzione dei livelli a monte e a valle dello stramazzo.

La legge di deflusso adottata nelle condizioni deflusso libero:

$$Q_{sf} = l\mu_1 h_1 \sqrt{2gh_1}$$
 [4.20]

e nel caso di deflusso rigurgitato:

$$Q_{sf} = l(\mu_1(h_1 - h_2) + \mu_2 h_2) \sqrt{2g(h_1 - h_2)}$$
[4.21]

dove l è la lunghezza della soglia, μ_1 e μ_2 sono pari rispettivamente a 0.4 e 0.65, h_1 e h_2 sono rispettivamente i livelli del pelo libero a monte e a valle, riferiti alla quota della soglia (con $h_2 < h_1$ -

 h_2). Mentre la quota di sfioro delle connessioni alveo/area o area/area è in generale ben definibile come la quota inferiore dell'elemento di contenimento che separa le aree stesse, invece la lunghezza del fronte di sfioro ha un valore dipendente in linea di massima dalla densità spaziale delle sezioni fluviali o dalla lunghezza dei lati delle aree.

Le portelle sono assimilate a luci a battente, che possono funzionare in modo bidirezionale in condizioni di deflusso libero o rigurgitato.

Nelle condizioni di deflusso libero si distinguono i seguenti tre casi:

1) livello di monte a quota inferiore all'intradosso della paratoia

$$Q_{sf} = l\mu_1 h_1 \sqrt{2gh_1}$$
 [4.22]

2) livello di monte a quota superiore all'intradosso della paratoia per una quantità minore dell'altezza della luce

$$Q_{sf} = l(\mu_2(h_1 - b) + \mu_1(2b - h_1))\sqrt{2g\left(h_1 - \frac{h_1 - b}{2}\right)}$$
 [4.23]

3) livello di monte a quota superiore all'intradosso della paratoia per una quantità maggiore dell'altezza della luce

$$Q_{sf} = l\mu_2 b \sqrt{2g(h_1 - \frac{b}{2})}$$
 [4.24]

Nelle condizioni di deflusso rigurgitato si distinguono i seguenti quattro casi:

1) livello di monte a quota inferiore all'intradosso della paratoia

$$Q_{sf} = l(\mu_1(h_1 - h_2) + \mu_2 h_2) \sqrt{2g(h_1 - h_2)}$$
[4.25]

2) livello di monte a quota superiore all'intradosso della paratoia per una quantità minore dell'altezza della luce e livello di valle minore dell'altezza della luce

$$Q_{sf} = l\mu_2 h_2 \sqrt{2g(h_1 - h_2)} + l(\mu_2(h_1 - b) + \mu_1(2b - h_1)) \left(\frac{b - h_2}{b}\right) \sqrt{2g(h_1 - h_2 - \frac{h_1 - b}{2})}$$
 [4.26]

3) livello di monte a quota superiore all'intradosso della paratoia per una quantità maggiore dell'altezza della luce e livello di valle minore dell'altezza della luce

$$Q_{sf} = l\mu_2 h_2 \sqrt{2g(h_1 - h_2)} + l\mu_2 (b - h_2) \sqrt{2g(h_1 - h_2 - \frac{b - h_2}{2})}$$
 [4.27]

4) livello di monte a quota superiore all'intradosso della paratoia per una quantità maggiore dell'altezza della luce e livello di valle maggiore dell'altezza della luce

$$Q_{sf} = l\mu_2 b \sqrt{2g(h_1 - h_2)}$$
 [4.28]

dove l e b sono rispettivamente la larghezza e l'altezza della luce della portella, μ_1 e μ_2 sono pari rispettivamente a 0.4 e 0.65, h_1 e h_2 sono rispettivamente i livelli del pelo libero a monte e a valle, riferiti alla quota della soglia della portella.

Inoltre è stato schematizzato come portella la sezione CO0036_C del borro di Colmate del tratto Colmate_01, che va nella sezione CO0036_D del tratto Colmate_02.

4.5 Il modello digitale delle aree inondabili

Il modello digitale del terreno con passo 10x10m è stato ricavato per aggregazione del rilievo Lidar 1x1m.

Nella fase di aggregazione in corrispondenza dei rilevati è stata attribuita alla cella 10x10m la massima quota del modello 1x1m, nei restanti casi è stata assegnata la quota media.

Il modello digitale del terreno è collegato alle sezioni fluviali attraverso una serie di soglie sfioranti la cui quota è ricavata dalle sezioni fluviali.

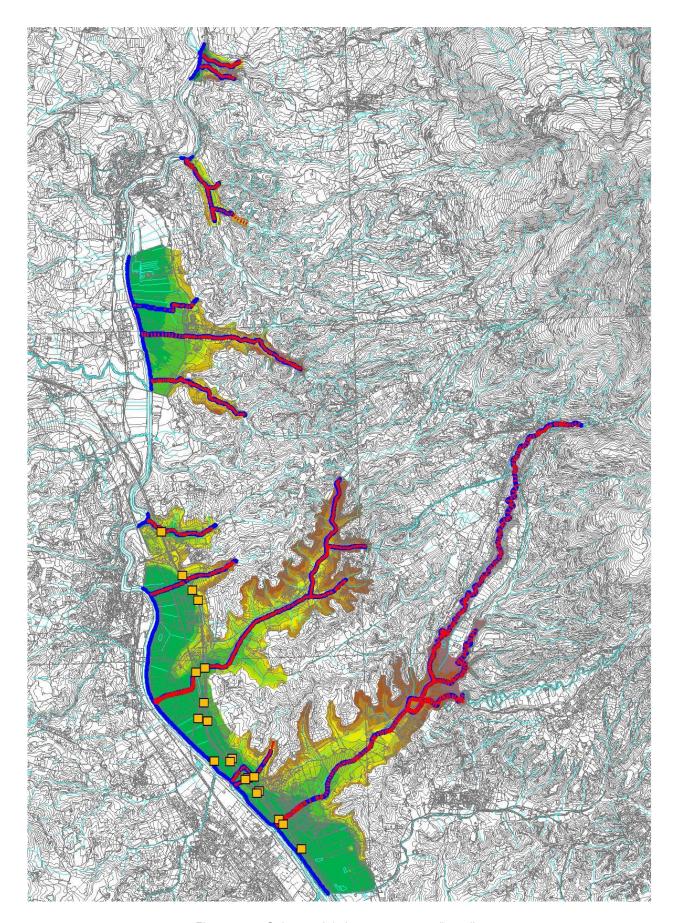


Figura 4-4 – Schema del sistema oggetto di studio.

4.5.1 Il modello digitale delle aree inondabili nell'area di Leccio

Per l'area di Leccio, nelle zone comprese fra la sponda destra del Torrente Leccio e il bacino del Fosso S. Carlino, il rilievo Lidar non è disponibile solo in parte. Il modello digitale del terreno utilizzato per la modellazione idraulica nella parte ove non è disponibile il rilievo Lidar era stato ricavato dalla cartografia scala 1:2000 ufficiale reperita dal sito della Regione Toscana.

A seguito della osservazione si è proceduto ad acquisire i seguenti dati integrativi (Figura 4-5):

- cartografia scala 1:2000 aggiornata fornita dal Comune di Reggello come punti quotati, curve di livello e edifici;
- rilievo GPS dell'area dell'Outlet "The Mall" oggetto di recente urbanizzazione.

Il modello digitale del terreno è stato raccordato in corrispondenza del bordo con i rilievi Lidar.

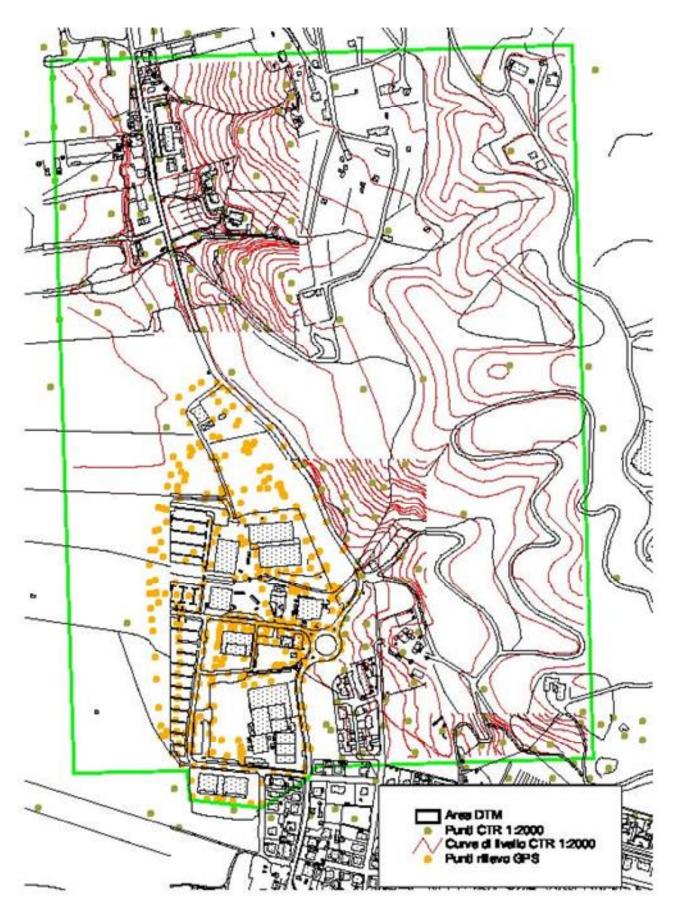


Figura 4-5 – Ricostruzione modello digitale area Leccio.

4.6 Definizione dei corsi d'acqua oggetto di studio

Il modello descritto in precedenza è stato implementato su di un sistema composto dai principali corsi d'acqua ricadenti nel comune di Reggello: borro Sant'Ellero, torrente Vicano, torrente Marnia, borro Trana, borro di Capannone, fosso San Carlino, fosso di Tornia, fosso di Leccio, fosso di Cetina, torrente Chiesimone, borro di Ricavo, borro di Castelnuovo, borro Orecchie, torrente Resco Cascese, torrente Resco Simontano, borro Pilano, borro di Colmate.

L'elenco dei corsi d'acqua considerati nell'ambito del presente studio è riportato nella Tabella 4-1, in cui sono indicati:

- la sigla che contraddistingue il corso d'acqua;
- il nome del tratto di corso d'acqua;
- la lunghezza del tratto;
- il numero di sezioni che compone il tratto.

Sigla	Nome	Lunghezza [m]	N. sezioni
VI	Torrente Vicano di Sant'Ellero	717	44
SE	Borro di Ciliana	645	54
MA	Torrente Marnia	1135	51
CP	Borro del Capannone	207	12
TR	Borro della Trana	647	21
SC	Fosso San Carlino	1152	59
LE	Fosso di Leccio	2864	153
TO	Fosso di Tornia	1857	90
CE	Fosso di Cetina	1225	62
RI	Borro di Ricavo	1502	81
CH	Torrente Chiesimone	5639	351
OR	Borro Orecchie	637	31
CA	Borro di Castelnuovo	627	34
CO	Fosso Colmate e Diversivo	1569	90
RE	Torrente Resco	10292	375
RS	Torrente Resco Simontano	1253	58
PI	Borro Pilano	1603	49

Tabella 4-1 – Elenco corsi d'acqua

4.7 Schematizzazione dell'area di studio

Il sistema idraulico considerato, schematizzato nel suo complesso per il territorio di Reggello è stato descritto da:

- n. 6 modello digitale del terreno, rappresentativo i principali corsi d'acqua nel Comune di Reggello;
- n. 25 tronchi fluviali individuati tramite le confluenze;
- n. 1627 sezioni fluviali;
- n. 7251 connessioni idrauliche tra le aree di potenziale esondazione e i corsi d'acqua e tra le aree stesse;

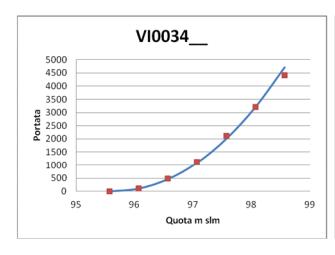
- n. 20 portelle di collegamento, rappresentative di scarichi, sottovia o tombamenti;
- n. 100 immissioni di portata liquida in altrettante sezioni di corsi d'acqua.

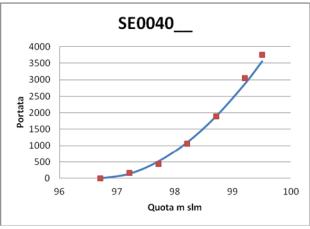
La planimetria delle sezioni fluviali utilizzate, delle connessioni idrauliche, delle portelle di collegamento e dei modelli digitali del terreno è riportata nell'elaborato T02_NW e T02_SW, mentre le principali caratteristiche di tali elementi sono riportate negli elaborati A01.

4.8 Parametri del modello idraulico

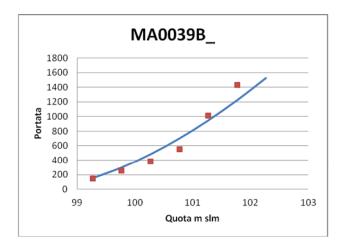
La condizione al contorno di monte, in termini di idrogrammi di portate, è stata assegnata nella prima sezione di monte di ciascun corso d'acqua: per ogni tempo di ritorno e per ogni durata dell'evento di pioggia, il relativo idrogramma di piena della condizione di monte è stato ricavato dai risultati dell'analisi idrologica.

Le immissioni idrologiche dei sottobacini imposte al sistema, sono state applicate senza tenere conto delle possibili esondazioni a monte delle immissioni stesse.

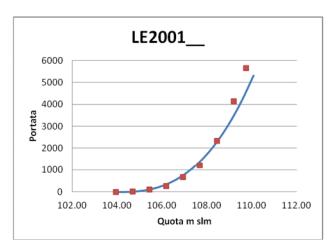

Le condizioni al contorno di valle state espresse in termini di scale di deflusso. Le relative scale di deflusso sono state assegnate all'ultima sezione del tratto verificato a monte della confluenza nel fiume Arno.

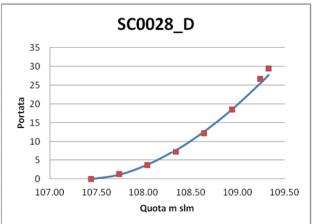

Le suddette curve hanno la seguente forma:

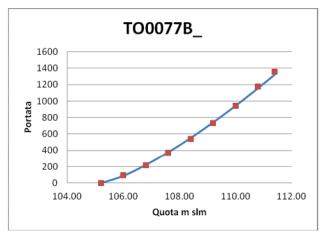
$$Q = a(h - h_0)^c + q_0 ag{4.7}$$

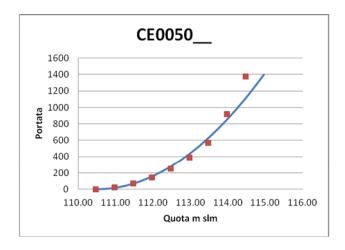

dove a, b, c e q_0 sono i parametri della scala di deflusso.

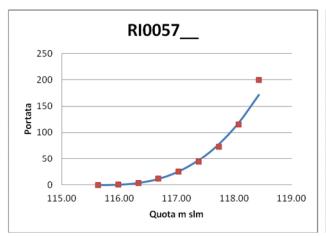
Sono state calcolate 2 differenti curve e assegnate nelle sezioni: L_VI0034__ e L_SE0040__ per il modello Vicell:

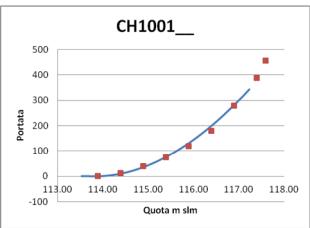




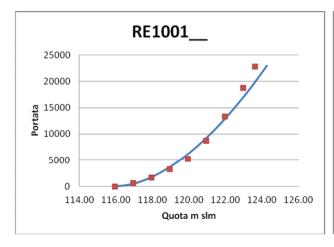

E' stata calcolata una curva assegnata nella sezione MA0039B per il modello Marnia:

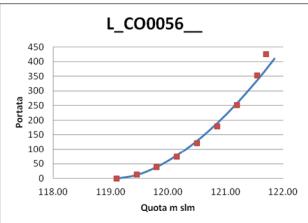

Sono state calcolate 3 differenti curve e assegnate nelle sezioni: LE2001__, SC0028_D e TO0077B_ per il modello Leccio:

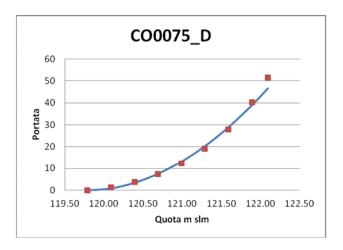




E' stata calcolata una curva assegnata nella sezione CE0050__ per il modello Cetina:




Sono state calcolate 2 differenti curve e assegnate nelle sezioni: L_RI0057__ e CH1001__ per il modello Ricchi:



Sono state calcolate 3 differenti curve e assegnate nelle sezioni: RE1001__, L_CO0056__ e CO0075 D per il modello Resco:

In prossimità dei ponti la sezione rilevata è stata suddivisa in 4 sezioni teoriche, di cui una a monte, una filo ponte monte, una filo ponte valle e una a valle in modo da schematizzare il fenomeno di rigurgito connesso con la presenza di un eventuale restringimento della sezione.

Sono stati adottati i parametri di scabrezza di Gauckler-Strickler, è stato assegnato per i tratti a cielo aperto del reticolo idrografico il valore di 30 $m^{1/3}s^{-1}$, caratteristico di alvei naturali normalmente vegetati e con trasporto solido moderato, mentre per i tratti tombati e per i ponti è stato utilizzato un coefficiente pari a 45 $m^{1/3}s^{-1}$.

Il coefficiente di scabrezza di Gauckler-Strickler per il DTM è stato assunto pari a 10 m^{1/3}s⁻¹.

I coefficienti delle perdite per espansione e contrazione sono stati assunti in generale pari a 0.1 (contrazione) e 0.2 (espansione), in corrispondenza dei ponti sono stati utilizzati i coefficienti 0.3 (contrazione) e 0.5 (espansione).

Le quote degli sfioratori d'alveo sono state ricavate dalle sezioni, la larghezza del fronte di sfioro è stata posta pari alla dimensione della cella del modello digitale, cioè 10m.

La legge di riempimento quota-volume delle aree di potenziale esondazione è stata elaborata a partire dal modello digitale del Lidar.

4.9 Le condizioni al contorno fiume Arno - Affluenti

Le scale di deflusso sono state calcolate in moto uniforme considerando uno scarico libero nel fiume Arno in quanto le verifiche sono relative a eventi critici per gli affluenti e non per il fiume Arno. Il presente studio è infatti finalizzato alla determinazione delle aree inondabili degli affluenti mentre quelle del fiume Arno sono state fornite dalla Autorità di Bacino del fiume Arno come previsto dall'art. 14 comma 2 della disciplina del PGRA. Al fine di verificare la "coerenza della mappa della pericolosità da alluvione" come previsto dall'art. 14 comma 6 della disciplina del PGRA è stato verificato che le eventuali esondazioni degli affluenti nel tratto di rigurgito fossero ricomprese nelle aree inondabili fornite dalla Autorità di Bacino.

Nella Tabella 4-2 si riportano i livelli in Arno alla confluenza dei corsi d'acqua studiati per eventi con tempo di ritorno di 30, 100, 200 e 500 anni ricavati dagli studi di aggiornamento della pericolosità idraulica del fiume Arno in corso presso l'Autorità di Bacino forniti dal Genio Civile.

Affluente	TR_30	TR_100	TR_200	TR_500
Torrente Resco	123.75	124.82	125.10	125.44
Fosso Colmate	123.15	124.18	124.48	124.94
Diversivo Fosso Colmate	123.15	124.18	124.48	124.94
Torrente Chiesimone	121.85	122.84	123.45	124.27
Borro di Ricavo	120.53	121.83	122.94	123.92
Fosso di Cetina	115.00	116.18	116.98	117.85
Fosso di Tornia	111.45	112.31	113.14	114.06
Fosso di Leccio	111.18	112.31	113.14	114.06
Fosso San Carlino	110.83	112.19	113.07	114.00
Torrente Marnia	104.96	106.07	106.74	107.41
Torrente Vicano di Sant'Ellero	100.40	101.38	102.05	102.72
Borro di Ciliana	100.28	101.27	101.95	102.62

Tabella 4-2 – Livelli massimi in Arno per i vari tempi di ritorno

Nella Figura 4-6, Figura 4-7, Figura 4-8, Figura 4-9, Figura 4-10, Figura 4-11, Figura 4-12, Figura 4-13, Figura 4-14, Figura 4-15, Figura 4-16, Figura 4-17 si riportano i profili longitudinali degli affluenti con i livelli riportati nella Tabella 4-2 nel tratto di rigurgito.

Si osservi che i rigurgiti sono in tutti i casi limitati ai tratti immediatamente a monte della confluenza.

E' stato verificato che i tratti di rigurgito sugli affluenti ove le acque possono esondare in occasione di eventi critici per il fiume Arno sono tutti ricompresi nelle aree inondabili del fiume Arno fornite dalla Autorità di Bacino.

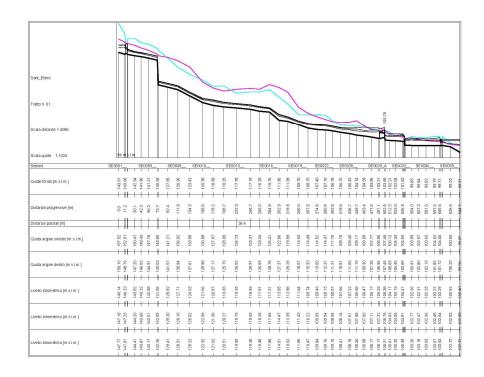


Figura 4-6 – Profilo torrente Vicano di Sant'Ellero con rigurgito Arno

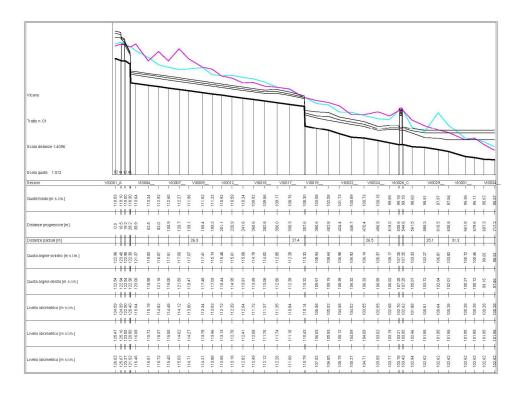


Figura 4-7 – Profilo torrente Borro di Ciliana con rigurgito Arno.

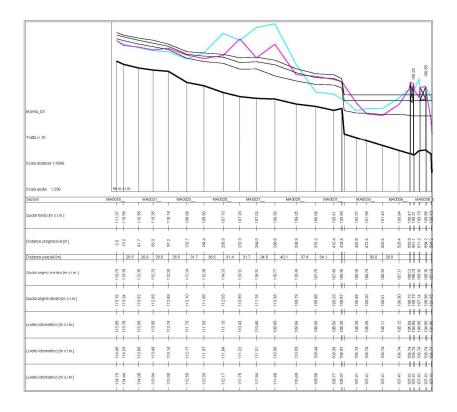


Figura 4-8 – Profilo torrente torrente Marnia con rigurgito Arno.

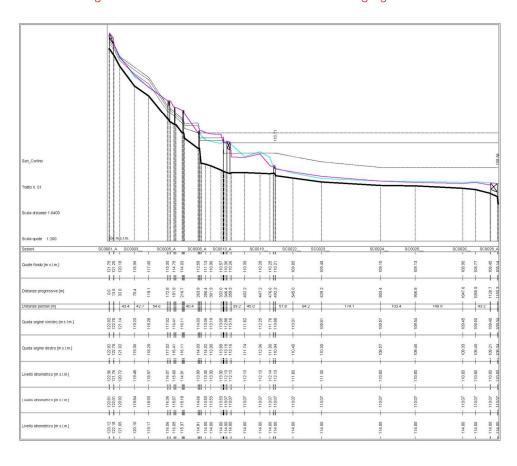


Figura 4-9 – Profilo torrente fosso San Carlino con rigurgito Arno.

Figura 4-10 - Profilo fosso di Leccio con rigurgito Arno.

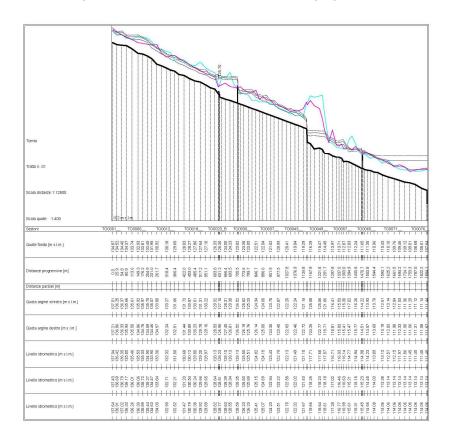


Figura 4-11 – Profilo fosso di Tornia con rigurgito Arno.

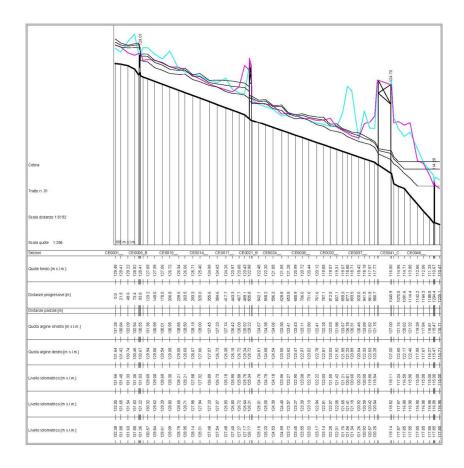


Figura 4-12 - Profilo fosso di Cetina con rigurgito Arno.

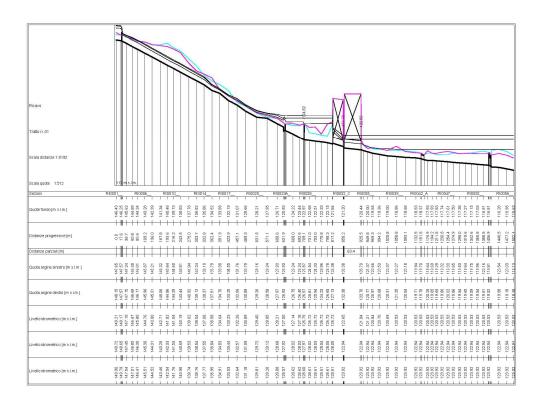


Figura 4-13 – Profilo borro di Ricavo con rigurgito Arno.

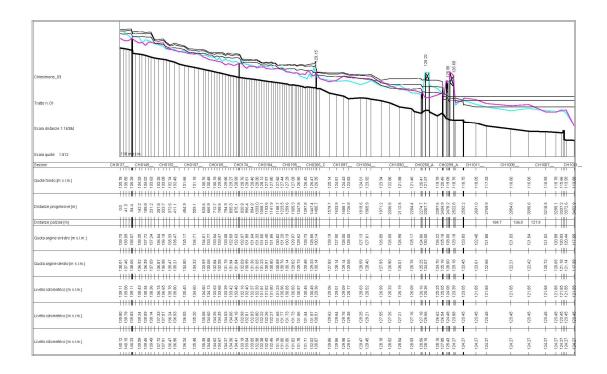


Figura 4-14 – Profilo torrente Chiesimone con rigurgito Arno.

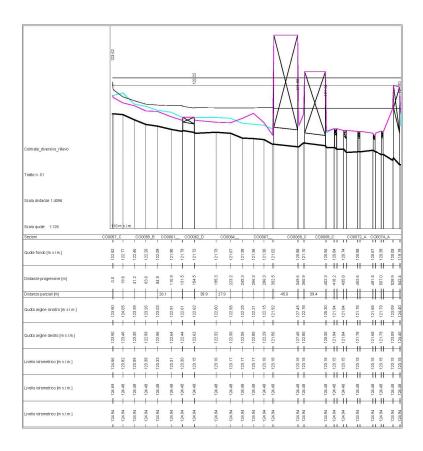


Figura 4-15 – Profilo diversivo fosso Colmate con rigurgito Arno.

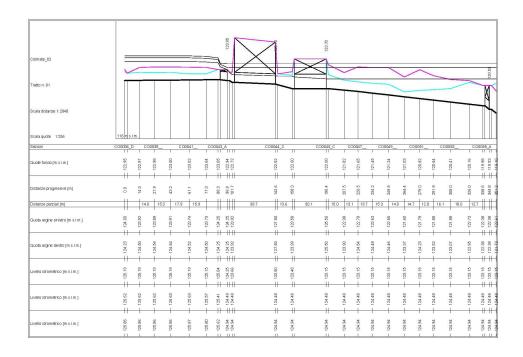


Figura 4-16 – Profilo fosso Colmate con rigurgito Arno.

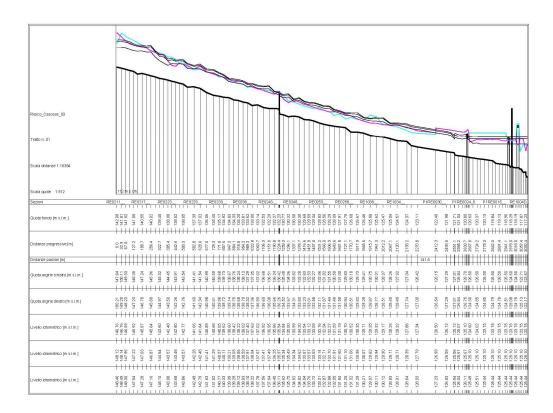


Figura 4-17 – Profilo torrente Resco con rigurgito Arno.

5 VERIFICA DELLO STATO ATTUALE

Le verifiche idrauliche dello stato attuale sono state condotte utilizzando la modellistica descritta nei paragrafi precedenti ed applicata ai tempi di ritorno di 30, 200 e 500 anni e per le durate critiche di ciascun corso d'acqua.

Le verifiche idrauliche hanno fornito, per ogni tempo di ritorno e durata considerati, i valori temporali e quelli massimi (inviluppi) di:

- portate e livelli idrometrici per ogni sezione del reticolo idrografico (modello monodimensionale);
- volumi e livelli idrometrici nelle aree di potenziale esondazione (modello quasibidimensionale);
- battenti di esondazione e velocità di propagazione nel DTM (modello bidimensionale);
- portate transitate attraverso gli elementi di connessione tra l'alveo e le aree e tra le aree stesse.

Lo scopo della verifica è stato quello di valutare i battenti massimi (inviluppo) di piena raggiunti nel territorio comunale di Reggello, in occasione di eventi con tempo di ritorno pari a 30, 200, 500 anni e la conseguente inondabilità delle suddette aree.

Nell'elaborato A01 sono riportati i tabulati delle verifiche idrauliche dei corsi d'acqua studiati per i tempi di ritorno di 30, 200 e 500 anni.

Nell'elaborato A02 sono riportate le sezioni fluviali dei corsi d'acqua studiati con i massimi livelli idrici valutati per i tempi di ritorno di 30, 200 e 500 anni nelle verifiche idrauliche.

Nell'elaborato T03.1, T03.2 e T03.3 si riportano i profili longitudinali dell'alveo, delle quote arginali e delle altezze idrometriche per i vari tempi di ritorno.

Negli elaborati T04.1_NW, T04.1_SW, T04.2_NW, T04.2_SW, T04.3_NW e T04.3_SW sono riportati i battenti di esondazione e le velocità di propagazione rispettivamente per i tempi di ritorno di 30, 200 e 500 anni.

Nell'elaborato T05_NW e T05_SW sono riportate le nuove perimetrazioni delle aree inondabili determinate a partire dai battenti di esondazione e dai tratti critici.

Nell'elaborato T06_NW e T06_SW è riportata la perimetrazione della pericolosità idraulica ai sensi del D.P.G.R. 53/R del 25 ottobre 2011.

Nell'elaborato T07_NW e T07_SW è riportato l'aggiornamento della perimetrazione della pericolosità idraulica ai sensi del PGRA.

5.1 Individuazione delle aree inondabili nello stato attuale

Sulla base dei risultati ottenuti dalle verifiche idrauliche condotte per i tempi di ritorno di 30, 200 e 500 anni, sono state perimetrale le aree inondabili (elaborato T05 NW e T05 SW).

Il tracciamento delle aree inondabili è stato condotto sulla base dei battenti di esondazione e sulla base delle quote altimetriche del rilievo Lidar.

In particolare, le aree inondabili sono state perimetrate considerando l'inviluppo dei battenti di esondazione valutati nel presente studio.

Nella Tabella 5-3 sono restituite i valori delle superfici complessivamente inondate nel comune di Reggello per i tempi di ritorno di 30, 200 e 500 anni nello stato attuale.

I valori riportati nelle suddette tabelle sono quelli calcolati nelle presenti verifiche idrauliche e non prendono in considerazione i risultati stimati in altri studi.

Denominazione	S ₃₀ [ha]	S ₂₀₀ [ha]	S ₅₀₀ [ha]
Modelli Bidimensionali	387.6	565.3	661.1

Tabella 5-1 – Superficie inondata nel comune di Reggello.

5.2 Aggiornamento della pericolosità idraulica nello stato attuale

Sulla base delle aree inondabili e sui battenti di esondazione sono aggiornate le fasce di pericolosità idraulica nel territorio comunale di Reggello ai sensi del D.P.G.R. 53/R del 25 ottobre 2011 (elaborato T06 NW e T06 SW) e ai sensi del PGRA (elaborato T07 NW e T07 SW).

Si ricorda che la pericolosità idraulica ai sensi del D.P.G.R. 53/R è stata definita in riferimento alle aree inondabili con tempo di ritorno 30, 200 e 500 con le seguenti modalità:

- I.2 aree inondabili con 200 <TR ≤ 500 anni;
- I.3 aree inondabili con 30 <TR ≤ 200 anni;
- I.4 aree inondabili con Tr ≤ 30 anni.

Nella si Tabella 5-2 si riporta l'estensione delle superfici perimetrate a diversa pericolosità idraulica ai sensi del D.P.G.R. 53/R.

Mentre la pericolosità idraulica ai sensi del PGRA è stata definita in riferimento alle aree inondabili con tempo di ritorno 30, 200 e 500 con le seguenti modalità:

- P.1 aree inondabili con 200 <TR ≤ 500 anni;
- P.2 aree inondabili con 30 <TR ≤ 200 anni;
- P.3 aree inondabili con TR ≤ 30 anni;

Nella si Tabella 5-3 si riporta l'estensione delle superfici perimetrate a diversa pericolosità idraulica ai sensi del PGRA.

Denominazione	I.4 [ha]	I.3 [ha]	I.2 [ha]
Modelli Bidimensionali	387.6	177.7	95.8

Tabella 5-2 – Superficie a diversa pericolosità nel comune di Reggello ai sensi del D.P.G.R. 53/R

Denominazione	P.3 [ha]	P.2 [ha]	P.1 [ha]
Modelli Bidimensionali	387.6	177.7	95.8

Tabella 5-3 – Superficie a diversa pericolosità nel comune di Reggello ai sensi del PGRA.

Per il fiume Arno, nelle tavole T05, T06 e T07, sono riportate con specifica legenda le perimetrazioni del SIMI fornite dalla Autorità di Bacino del Fiume Arno.

5.3 Pericolosità morfologica e storico inventariale

La pericolosità idraulica calcolata su base idraulica è stata estesa ai corsi d'acqua riportati nella su base morfologica e storico inventariale.

Corso doacqua	Lunghezza [m]
Resco Simontano	4500
Fosso di Luco	3450
Torrente Chiesimone	1000
Fosso di Tornia	1640
Fosso di Leccio	850
Torrente Marnia	2260
Borro della Trana	540

Tabella 5-4 – Corsi d'acqua oggetto di analisi morfologica e storico inventariale.

L'analisi morfologica e storico inventariale è stata condotta con i criteri riportati nella Tabella 5-5.

			storiche di
		inondazione o alveo attivo	
		SI	NO
Situazione morfologica	0.0	1.4	1.0
(quota rispetto al piede esterno dell'argine o al	< 2.0 m	1.4	1.3
ciglio di sponda)	> 2.0 m	1.3	1.2

Tabella 5-5 – Criteri di assegnazione della pericolosità geomorfologica.

Nei tratti di indagine geomorfologica e coperti da modello digitale del terreno Lidar è stata estratta mediamente una sezioni ogni 100 m al fine di valutare la situazione morfologica. Per quanto riguarda la componente storico inventariale sono state considerate aree con notizie storiche di inondazione le aree allagabili della carta del contesto idraulico e l'alveo attivo.

Studio idraulico e idraulico nel Comune di Reggello a supporto dell'attività di revisione del Piano Strutturale